
www.manaraa.com

www.manaraa.com

Software Engineering
on Sun Workstations®

www.manaraa.com

Bill Cureton
Editor

Software Engineering on
Sun Workstations®

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest

www.manaraa.com

Bill Cureton
INFO Enterprises
Gateway 1
426 North 44th St., Suite 250
Phoenix, AZ 85008-7689 USA

Library of Congress Cataloging-in-Publication Data
Software engineering on Sun workstations / Bill Cureton, editor.

p. em.
Includes index.

ISBN-13: 978-1-4613-9120-3 e-ISBN-13: 978-1-4613-9118-0
DOl: 10.1007/978-1-4613-9118-0

1. Software engineering. 2. Sun computers-Programming.
I. Cureton, Bill.
QA76.758.S646455 1993
005.1-<1c20 93-17488

Printed on acid-free paper

©1993 Springer-Verlag New York, Inc.
Softcover reprint of the hardcover 1 st edition 1993

This is a Springer-Verlag title published by TELOS, The Electronic Library of Science, a Springer-Verlag imprint, Santa
Clara, CA, USA.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts
in connection with reviews or scholarly analysis. Use in connection with any form of information storage and re­
trieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
Portions of this book include text and code examples taken from several Solaris® manuals, including OpenWin­
dows™ V3 User's Guide, OpenWindows V3 DeskSet™ Integration Guide, ToolTalk™ 1.0 Programmer's Guide, all
copyrighted©1991 by Sun Microsystems, Inc. and used with permission. The book does not necessarily represent the
views, opinions, or product strategies of Sun Microsystems or its subsidiaries.
Sun is a trademark of Sun Microsystems, Inc. Reference to "Sun" and any other trademarks of Sun Microsystems,
Inc., in the book or the series title are for descriptive purposes only, and do not imply any connection with or impri­
matur from Sun Microsystems, Inc. or any of its subsidiaries. The opinions and information contained in this book
are those of the author(s) alone, and do not represent the views, opinions, or product strategies of Sun Microsystems,
Inc. or its subsidiaries. Sun Microsystems, Inc. is not responsible for its contents or its accuracy, and therefore makes
no representations or warranties with respect to it.
All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC in­
ternational, Inc. SPARCompiler™, SPARCworks™, and SPARC® Performance by Design, are licensed exclusively to
Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Mi­
crosystems, Inc.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not
especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise
Marks Act, may accordingly be used freely by anyone.

Production managed by Karen Phillips; manufacturing supervised by Vincent Scelta.
Photocomposed pages prepared from the editor's Framemaker files.

9 8 7 6 5 4 3 2 1

www.manaraa.com

Dedication

This humble edited tome is dedicated to the four most
important people in my life. They are, my parents, who
bought me the books and sent me to school, and my wife,
who made me finish school and this book as well, and to
my son Nicky who is just now learning to read and is
starting school!

www.manaraa.com

Acknowledgments

I wish to acknowledge the major contribution of many, many
individuals in the creation and final preparation of this book.
In fact, like many Academy Award acceptance speeches,
there were, in reality, so many people involved with this
project that some individuals are bound to be overlooked. I
apologise.

First, I want to thank everyone directly involved from Sun
Microsystems®. Many of the chapters in this book had their
genesis as technical publications written and polished by en­
gineers and technical writers. The list is simply too long to
mention, and in some cases, while doing my research, I had
discovered that the identity of many of the original authors
had become obscured by time and revisions. Perhaps in a
Second Edition I may be fortunate enough to identify key
contributors by name. A few include Steve Muchnick, Vida
Ghodssi, Keith Bierman in SunPro, and Pierre Bedard, Steven
Uhlir and the ToolTalk team in SunSoft.

I also want to thank Bill Joy, John Gage, and George Sy­
mons for their continued encouragement with this project.

Finally, a deep debt of gratitude is due to the fine people
at Springer-Verlag and TELOS in Santa Clara, CA, without
whom this book would have never come together. I wish to
thank my publisher at TELOS, Allan Wylde, Telos Publishing
Associate Cindy Peterson, and the book production staff at
Springer-Verlag New York.

www.manaraa.com

Editor's Note

Between the time this project was begun back in 1992 and the
Summer of 1993 several important events that will directly
affect the use of Sun Workstations® in application develop­
ment, and the entire computing landscape, have transpired.

First, and perhaps most importantly, in early 1993 the
Common Operating System Environment or COSE consor­
tium was announced. This group, led by Novell, USL, ATI,
NCR, Sun, HP and others, is attempting to create a common
operating environment based on Unix SVR4, from the re­
maining fragmented elements of the Unix camp. They are
motivated, no doubt, by the threat, real or perceived, from
that other OS juggernaut, Windows-NT from Microsoft. One
important factor that will affect the reader of this edition of
this book is that the sections discussing OpenLook and its
associated DevGuide G.v.I. builder will need to be reas­
sessed in light of Sun Microsystems apparent intent to sup­
port Motif in conjunction with the COSE architecture and
strategy. This evolving situation will need to be "actively"
monitored by anyone interested in developing applications
on and for Sun Workstations in the future. The inevitability
of Motif-on-Sun will elicit a sigh-of-relief from certain quar­
ters.

www.manaraa.com

x

Second, the Solaris® as has gone through a profound
metamorphosis in the period during which this book was
compiled. The key elements of this change reflect the
"switch" to the SVR4 base, the addition of support for sym­
metric multi-processing, and multi-threading. The latter two
features are powerful enhancements. They will need to be
supported by a new generation of development tools. Per­
haps a future edition of this book will include chapters on
these new developments.

Third, the movement towards the object-oriented para­
digm is one of Sun Microsystems most compelling strengths
in the next generation of software development. Sun Micro­
systems has played a seminal role in the creation and evolu­
tion of the C++ programming language, and Sun is one of the
original co-founders of the Object Managment Group OMG
(Cambridge, MA). Anyone interested in advanced object-ori­
ented development is encouraged to track the startling
progress of the OMG since 1989.

Finally, a few of the programming languages that began in
1992 as "Sun Core Programming Language" have been "re­
turned" to their roots, as it were, for ongoing maintenance
and enhancement. These are most notably "SunCommon
LispTM" which is now offered and maintained by Lucid
(Menlo Park, CA) and "SunCoboI™" which is now offered
and maintained by MicroFocus (Palo Alto, CA).

I sincerely hope you find this book useful. The publisher
and I would like to hear from you. If, indeed, you are devel­
oping client-server applications on and for the Sun platform
you have chosen one of the best all-around development and
runtime environments in the technical and business com­
puting world today.

Bill Cureton
Phoenix,AZ
August 1993

Editor's Note

www.manaraa.com

Contents

Acknowledgments
Editor's Note . .

CHAPTER 1 ToolTalk® Overview.

1.1 Introduction.
1.2 General Application Requirements
1.3 Message Patterns .
1.4 Sending Messages.
1.5 Receiving Messages
1.6 Objects. . .
1.7 ToolTalk API. . .

CHAPTER 2 SPARCompiler™ Compilation Technology

2.1 Introduction.
2.2 SPARCompiler Family Overview.
2.3 C, C++, FORTRAN and Pascal
2.4 Ada.
2.5 Sun Common LispTM. . . .
2.6 Sun COBOUM
2.7 References
2.A Appendix A-Optimization Definitions

vii
ix

1

1
18
29
46
64
70
79

177

177
178
179
188
192
200
204
204

www.manaraa.com

CHAPTER 3 The SPARCworks ™ Programming Environment

3.1 Introduction. . . .
3.2 SPARCworks Manager
3.3 Source Browser . . .
3.4 Debugger.
3.5 Using SourceBrowser with Debugger
3.6 Analyzer.
3.7 FileMerge.
3.8 MakeTool.
3.9 Conclusion

CHAPTER 4 Integrating Development Tools with SPARCworks

4.1 SPARCworks Tool Integration
4.2 SPARCworks Manager.
4.3 Integrating Development Tools with the ToolTalk Service
4.4 SPARCworks Manager and dbx Protocols

CHAPTER 5 Devguide-The Open Windows G.U.I. Builder.

5.1 Introduction.
5.2 Overview.
5.3 What does Devguide do for You?
5.4 Choosing a Code Generator . .
5.5 Common Problems and Recommended Solutions.
5.6 Similar Products
5.7 Conclusion

CHAPTER 6 Integrating Applications on the Sun Desktop

6.1 Introduction. .
6.2 Selections. . .
6.3 Drag and Drop.
6.4 Classing Engine
6.A Appendix A-Drag and Drop User Interface Specification.
6.B Appendix B-Examining a Classing Engine Database
6.C Appendix C-Vendor Data Type Registration . .
6.D Appendix D-DeskSet Defined ToolTalk Messages
6.E Appendix E-ToolTalk Example Program . . .

xii

209

209
210
211
219
225
226
236
238
244

247

247
249
261
271

277

277
279
280
287
291
294
296

297

297
304
307
323
355
384
385
389
391

Contents

www.manaraa.com

CHAPTER 1
ToolTalk® Overview

1.1
Introduction

1.1.1
ToolTalk
Scenarios
Software Engineering

The ToolTalk® service is used by independent applications to
communicate with each other without having direct knowl­
edge of each other. Applications communicate by creating
and sending ToolTalk messages. The ToolTalk service re­
ceives these messages, determines the recipients, and then
delivers the messages to the appropriate applications. See
Figure 1.1.1. Before modifying your application to use the
ToolTalk service, you must define (or locate) a message pro­
tocol: a set of ToolTalk messages describing operations that
applications agree to perform. The message protocol specifi­
cation includes the set of messages and how applications
should behave when they receive the messages.

To illustrate the use of the ToolTalk service, here are two sce­
narios of applications working together to help users solve
their work problems. The message protocols used in these
scenarios are hypothetical.

In computer-aided software engineering (CASE), the Tool­
Talk service provides a way to connect and coordinate indi­
vidual programs in a programming environment. For this
scenario, a tool manager, graphical debugger, call grapher,
editor, and source browser are all tools used in this ToolTalk­
based developer's environment. These tools have been mod.

www.manaraa.com

Application
A

Application
6

The ToolTalk Service

Application
C

Application
D

Figure 1.1.1. Applications using the ToolTalk service to communicate.

Table 1.1.1. CASE message protocol.

Message

Started

Stopped

Launch

Quit

Display

CallGraphFunction

GetSelection

2

Description

Informs tool manager that this tool is started.

Informs tool manager that this tool is stopped.

Requests a certain tool to start.

Requests a certain tool to stop.

Requests that a tool that can edit a file load the file and scroll the file to
a particular line number.

Requests that a tool that can graph calls display the graph for this
function in this file that is part of this program.

Requests that the tool with the current selection return the file name
and line number.

Hied to use the ToolTalk service and implement the messages
shown in Table 1.1.1.

To determine what's causing a particular error message, a
programmer starts the tool manager, a program used to co­
ordinate the development tools in the environment. From the
tool manager, the programmer double-clicks on the source
browser and graphical debugger icons to start them. The tool
manager sends a Launch message to each tool and as they

Chapter 1. ToolTalk® Overview

www.manaraa.com

Computer-Aided
Design

1.1.1 ToolTalk Scenarios

start, they send a Started message to the tool manager with
ini tializa tion information.

The programmer loads a source code file in the source
browser and finds out where the error message is located in
the source code. After selecting the text of the error message,
the programmer moves to the graphical debugger and selects
a "Set BreakPoint" menu item. The debugger sends a GetSe­
lection message to the tools currently running in the environ­
ment (in this case, just the source browser.) The source
browser returns the file name and line number and the de­
bugger loads the file, moves to the line number, and sets the
breakpoint.

The programmer then runs the program and locates the
call that results in the error message. A feature of the debug­
ger is the menu item, "Show Call Graph". After this menu
item is selected, the debugger sends a CallGraphFunction
message. The ToolTalk service starts up the installed call gra­
pher if one isn't already running and delivers the message.

The call grapher loads the call graph for the specified file
and scrolls to the specified function. The programmer sees
another function that looks suspicious that's called just be­
fore the function producing the error. The programmer dou­
ble-clicks on the suspicious function and the call grapher
sends a Display message.

The ToolTalk service starts an editor and delivers the Dis­
play message. The editor loads the file and scrolls to the spec­
ified line number where the engineer discovers an error.
After fixing the error, the programmer stops work by asking
the tool manager to shut down all the tools. The tool manager
sends Quit messages to all tools that are currently running.
The tools clean up, send a reply to the Quit message, and exit.

In the computer-aided design (CAD) of hardware compo­
nents, tools that are able to communicate with each other
help automate the design process for the hardware engineer.
In this scenario, there is a tool control program that orches­
trates tool sequences and CAD tools that have been modified
to use the ToolTa1k service. All use a CAD message protocol
that includes the messages shown in Table 1.1.2

The design engineer begins work by starting the tool con­
trol program. As a new tool is needed in the design sequence,
the engineer starts the tool from the control program. Each
tool initializes with the ToolTa1k service and sends out a Too1-

3

www.manaraa.com

Started message to notify the control program that it is now
running.

Table 1.1.2. CAD message protocol.

Message

ToolStarted

ToolFinished

DesignOpened

Design Write

Design WriteDone

DesignRead

DesignReadDone

1.1.2

Description

Informs interested tools that this tool started running.

Informs interested tools that this tool has stopped running.

Informs interested tools that a particular design data set was opened
for access.

Requests a certain tool to begin writing to a particular design data set.

Informs interested tools that a particular design-write operation has
been completed.

Requests a certain tool to begin reading a particular design data set.

Informs interested tools that a particular design-read operation has
been completed.

The engineer begins work by loading a design into a PC
layout tool for editing purposes. When the tool has loaded
the design, it sends out a DesignOpen message, which noti­
fies other tools in the environment that it has opened the file
and begun to write design data. When the engineer has fin­
ished editing the data, the layout tool sends a Design Write­
Done message, which signals the control program. (In this
protocol, only the control program registers interest in the
Design WriteDone message.)

The control program then sends a DesignRead message to
the next tool required in the design sequence. After the next
tool reads the design, it sends a DesignReadDone message to
notify others that it as finished.

How
Applications Use
ToolTalk

As mentioned earlier applications create, send, and receive
ToolTalk messages in order to communicate with each other.
Sending applications create, fill in, and send a message; the
ToolTalk service determines the recipients and delivers the
message to the receiving applications. Receiving applica­
tions retrieve messages and after examining the information
in the message, either discard the message or perform an op­
eration and reply with the results.

4

An important ToolTalk feature is that sending applications
need to know little about the receiving application. This is

Chapter 1. ToolTalk® Overview

www.manaraa.com

Registering Interest
in ToolTalk Messages

Sending ToolTalk
Messages

1.1.2 How Applications Use ToolTalk

because applications that want to receive messages register
their interest in specific types of messages with the ToolTalk
service.

The reason that sending applications need to know little
about the receiving application is because applications that
want to receive messages explicitly state what these mes­
sages should look like. This information is registered with
ToolTalk in the form of message patterns. These message pat­
terns usually match the message protocols that applications
have agreed to use. Applications can add more patterns for
individual use.

Message patterns are created much like a message is cre­
ated; the same type of information is used in both. For each
type of message an application wants to receive, it obtains an
empty message pattern, fills in the attributes, and registers
the pattern with the ToolTalk service.

When the ToolTalk service receives a message from a
sender, it compares the information in the message to the pat­
terns that are registered. Once matches have been found, the
ToolTalk service delivers copies of the message to all recipi­
ents.

For each pattern describing a message it wants to receive,
an application declares whether it can handle the message or
just wants to observe it. Although many applications can ob­
serve a message, only one application can handle it to ensure
that a requested operation is performed at most once. If the
ToolTalk service cannot find a handler for a message, it re­
turns the message to its sender indicating that delivery
failed.

Applications provide message patterns to the ToolTalk
service at installation time and/or while the application is
running.

To send a ToolTalk message, an application obtains an empty
message, fills in the message attributes, and sends the mes­
sage. ToolTalk messages are simple structures containing
fields for address, subject, and delivery information. To send
a ToolTalk message, an application need only provide this
information:

• Should the recipient respond to the message; is this a
notice or a request?

5

www.manaraa.com

Receiving ToolTalk
Messages

1.1.3
ToolTalk
Messaging
Methods

6

• What operation should be performed/has been per­
formed? Are there arguments needed to perform the op­
eration?

• What interest does the recipient share with the sender;
is the recipient running in a specific user session or in­
terested in a specific file?

To help narrow the focus of the message delivery, an ap­
plication can provide more information in the message. See
Section 4, "Sending Messages," for a complete listing and de­
scription of ToolTalk message attributes.

When the ToolTalk service determines that a message needs
to be delivered to a specific process, it creates a copy of the
message and notifies the process that a message is waiting. If
a receiver is not running, the ToolTalk service looks for in­
structions (provided by the application at installation time)
on how to start the application.

The process retrieves the message and examines its con­
tents. The message may contain a notice that some operation
has been performed. In this case, the process discards the
message after reading the information. If the message con­
tains a request to perform an operation, the process performs
the operation and returns the result of the operation in a reply
to the original message. Once the reply has been sent, the
process can discard the original message.

The ToolTalk service provides two methods of addressing
messages: process-oriented and object-oriented messaging.
Process-oriented messages are messages addressed to pro­
cesses. Applications that create a message address it to either
a specific process or a particular type of process. Process-ori­
ented messaging is a good way for existing applications to
begin communicating with others. Modifications for sup­
porting process-oriented messaging are straightforward and
usually take a short time to implement.

Object-oriented messages are messages addressed to objects
managed by applications. Applications that create a message
address it to either a specific object or a particular type of
object. Object-oriented messaging is particularly useful for
applications that currently use objects or are being designed
around objects. Even if an existing application is not object­
oriented, the ToolTalk service provides a way for you to iden­
tify portions of application data as objects so that applica­
tions can begin communicating about these objects.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Process-Oriented
Messaging

Processes

Sessions

1.1.3 ToolTalk Messaging Methods

Process-oriented messaging provides a communication path
between applications to deliver information or request that
an operation be performed by the process receiving the mes­
sage. To use process-oriented messaging, you need to be fa­
miliar with these ToolTalk concepts:

• Processes
• Sessions
• Files

One execution of an application, tool, or program that uses
the ToolTalk service is called a process in this book. A process
is a SunOS process that has initialized and registered with the
ToolTalk service.

Procid. When a process opens communication with the
ToolTalk service, it receives a process identifier (procid). Ap­
plications who want to send a message to a specific process
must know the receiving application's procid. To find out this
information, the sender can look at a previous message sent
by the target application. The ToolTalk service automatically
fills in a message's sender attribute with the sender's procid.

Ptype. You can instruct the ToolTalk service to consider
your application as a potential message receiver when no
process is running the application. This is done by providing
message patterns and instructions for starting the applica­
tion in a process type (ptype). The ptype file is compiled with
the ToolTalk type compiler, tUype_comp, at application in­
stallation time to make the information available to the
ToolTalk service.

When an application has a ptype, part of the registration
and initialization activities include registering the ptype with
the ToolTalk service. Registering a ptype will automatically
register the message patterns listed in it.

A group of processes running in the same X session or pro­
cess tree session is called a session in this book. A session also
contains an instance of the ToolTalk communication pro­
gram, ttsession.

When a process opens communication with the ToolTalk
service, the process that actually provides the procid is ttses­
sion. A side effect of opening ToolTalk commu.1ication is that
the session in which the action takes place becomes the de­
fault session for the process.

7

www.manaraa.com

Files

The concept of a session is important in the delivery of
messages. Senders can "scope" a message to a session and
the ToolTalk service will deliver it to all processes that have
message patterns that refer to the current session. To update
message patterns with the current session identifier (sessid),
applications "join" the session.

A container for data that is of interest to applications is called
a file in this book. The concept of a file is important in the
delivery of messages. Senders can scope a message to a file
and the ToolTalk service will deliver it to all processes that
have message patterns that refer to the file without regard to
the process's default session. To update message patterns
with the current file pathname, applications "join" the file.

It is also possible to scope a message to a file within a ses­
sion. The ToolTalk service will deliver the message to all pro­
cesses that refer to both the file and session in their message
patterns.

Object-Oriented
Messaging

To use object-oriented messaging you need to be familiar
with the process-oriented messaging concepts plus the
ToolTalk concept of "object".

ToolTalk Objects

file

A ToolTalk object is a piece of application data for which a
ToolTalk object specification has been created. Object data is
stored in two parts as shown in Figure 1.1.2. One part is called
the object contents, and is managed by the application that
creates it. An object's contents is typically a piece, or pieces,
of an ordinary file: a paragraph, a source code function, or a
range of spreadsheet cells, for example.

____ --oftbject

I object spec IH---------1~ managed by the ToolTalk service,
stored in the ToolTalk database

object content :I----___ .~ managed by application,
stored in file

Figure 1.1.2. ToolTalk object data.

8

The second part of an object's data is the object specification
(spec). Applications create and write specs to the ToolTalk da-

Chapter 1. ToolTalk® Overview

www.manaraa.com

1.1.4
ToolTalk
Architecture

1.1.4 ToolTalk Architecture

tabase managed by the ToolTalk database program, rpc.ttdb­
serverd.

A spec contains standard properties, such as the type of
object, the name of the file in which the object's contents are
located, and the object's owner. Applications can also add
their own properties to a spec, such as the location of the ob­
ject within a file. Because applications can store additional
information in specs, you can identify data in existing files as
objects without changing the formats of the files. You can also
create objects of pieces of read-only files.1

Object Types. When a message is addressed to a specific
object or a type of object, the ToolTalk service must be able to
determine to which application to deliver the message. Ap­
plications provide this information in object types (otypes). An
otype file contains the ptype of the application that manages
the object and message patterns that pertain to the object.
These message patterns also contain instructions on what the
ToolTalk service should do when a message is available but
the application isn't running. ToolTalk can start the applica­
tion to deliver a message, queue the message, or discard it.

The otype file is compiled with t t_type_comp at appli­
cation installation time to make the information available to
the ToolTalk service. When an application that manages ob­
jects registers with the ToolTalk service, it declares its ptype.
When a ptype is registered, the ToolTalk service checks for
otypes that mention the ptype and registers the patterns
found in these otypes.

Object Files. When object-oriented messaging is used, the
ToolTalk definition of "file" is expanded to include the state­
ment "container storing ToolTalk objects." Applications can
query for objects in a file and perform operations on batches
of objects.

The following ToolTalk service components work together to
provide interapplication communication and object informa­
tion management:

• ttsession
The ToolTalk communication process. One ttsession
runs on a machine and communicates with other t t-

1. You cannot create object in files that are in a read-only file system. The
ToolTalk service must be able to create a database in the same file system as
the object.

9

www.manaraa.com

sessions when a message needs to be delivered to an
application in another session.

• rpc. t tdbserverd
The ToolTalk database server process. One rpc . t tdb­
serverd is installed on a disk partition that stores files
of interest to ToolTalk clients or files containing ToolTalk
objects.

• libtt
The ToolTalk application programming interface (API)
library. Applications include the API library in their pro­
gram and call the ToolTalk functions found in the li­
brary.

The ToolTalk service uses SunSoft's ONC RPC to commu­
nicate between these ToolTalk components. It encodes mes­
sages according to the external data representation (XDR)
standard.

The process and object type information that an applica­
tion provides to the ToolTalk service is stored in the Classing
Engine, an Open Windows™ desktop type database. File and
ToolTalk object information is stored in a NetISAMTM data­
base managed by rpc. dbserverd.

The Classing Engine is automatically installed with Open­
Windows V3. RPC and NetISAM are provided by SunOS.

See Figure 1.1.3 for an illustration of the ToolTalk service
architecture.

The ToolTalk Service

Ctsession rpc . t tdbserverd rT'"--'Pl

ONC remote procedure call (RPC)

Figure 1.1.3. ToolTalk service architecture.

10 Chapter 1. ToolTalk® Overview

www.manaraa.com

1.1.5
Modifying Your
Application

1.1.6
What You Need
to Integrate

Instructions

Sample Programs

1.1.6 What You Need to Integrate

To use the ToolTalk service, an application calls ToolTalk
functions from the ToolTalk application programming inter­
face (API). The ToolTalk API provides functions for register­
ing with the ToolTalk service, creating message patterns,
sending messages, receiving messages, examining message
information, and so forth. The first step in actually modifying
your application is to include the ToolTalk API header file in
your program.

The detailed instructions for modifying your application
are found in Sections 2 through 6.

To integrate with the ToolTalk service, you must install the
Open Windows V3 Programmer Set.

Note - OpenWindows V3 requires SunOS 4.1.x.

The instructions and software you'll need to integrate
your application with the ToolTalk service are listed below.

The information you will need to design or modify your ap­
plication is found in this book. Step-by-step instructions
show you how to modify your application to use the ToolTalk
service.

For a tutorial on process-oriented messaging, see the
Open Windows Version 3 Desktop Integration Guide. The tuto­
rial describes the concepts necessary for process-oriented
messaging and provides step-by-step instructions for modi­
fying your application to send and receive messages. In this
tutorial, message patterns are created and registered while
the application is running.

To illustrate the step-by-step instructions in this book, the fol­
lowing sample programs are used.

• ttsamplel
A simple Xview broadcast slider/thermometer dem­
onstration program. Start two or more copies to see
the effect of broadcast messages.

• Sun_Edi tDemo
An object-oriented Xview program that creates objects
out of lines of code. Includes an object control window
and simple editor. Objects are wrapped in text with C­
style comments.

11

www.manaraa.com

ToolTalk Software

12

Another sample program not used in this book but inter­
esting to look at is the t tmon program, a message monitoring
Xview program that watches all ToolTalk message traffic in
the local session.

These sample programs and a makefile are located in the fol­
lowing directory:

$OPENWINHOME/share/src/tooltalk/

The ToolTalk service is available with the Open Wmdows V3
release and is automatically installed with the Open Win­
dows system. Be sure to install the Programmer's Subset.
Here are the ToolTalk service directories and files:

$OPENWINHOME/bin/

install_tt
ToolTalk installation script. Used by Open Windows
V3 installation script.

rpc.ttdbserverd
ToolTalk database management program. Must be in­
stalled on all filesystems that contain files referred to
by applications in file scoped messages and files con­
taining ToolTalk objects.

ttdbck
Utility to check and repair lbolTalk databases.

ttcp
ttmv
ttrm
ttrmdir
tttar

Unix shell commands enhanced to inform the
ToolTalk service of the movement of files and objects.

ttsession
ToolTalk communication program that runs in each
session.

tt_type_comp
ToolTalk type compiler for ptype and otype files.

$OPENWINHOME/lib/
1 ibtt . so . 1. 1
libttstub.so.l.l
libtt. a

Chapter 1. ToolTalk® Overview

www.manaraa.com

Publish Your Ptypes
and Otypes

1.1.6 What You Need to Integrate

$OPENWINHOME/include/desktop/
tt_c.h

ToolTalk API header file. Include this file in your pro­
gram.

$OPENWINHOME/lib/locale/C/LC_MESSAGES/
Sun_ToolTalk.mo

ToolTalk catalog of error and event messages.

$OPENWINHOME/man/manl/
install_tt.l
tt_type_comp.l
ttcp.l
ttmv.l
ttrm.l
ttrmdir.l
ttsession.l
tttar.l

$OPENWINHOME/man/man3/
ttapi.3

$OPENWINHOME/man/man8/
rpc.ttdbserverd.8
ttdbck.8
ttdbserverd.8

Man pages for ToolTalk binaries, type compiler, en­
hanced shell commands, API, and database check util­
ity.

Ptypes and otypes make it possible to send messages to types
of processes, types of objects, and specific objects. This infor­
mation is compiled at application installation time and
stored in the Classing Engine database.

To communicate with other vendor's applications, you
must know their ptypes and possibly their otypes (depend­
ing on what method of messaging you choose). SunSoft helps
facilitate this by providing a Vendor Data Type Registration
program. As type information is gathered, it will be publicly
available through the SUCCESSTM database, SunSoft's on­
line electronic support service for SunSoft's software devel­
opers. See the Open Windows Version 3 Desktop Integration
Guide for more information.

13

www.manaraa.com

1.1.7
Setting Up the
ToolTalk Service
Installing the
ToolTalk Service

Starting a ToolTalk
Session

14

Install the Open Windows V3 Programmer's Subset.

t t s e s s i on is the ToolTalk message server. This background
process must be running before any messages can be sent or
received. Each message server defines a "session".

ttsession is automatically started by the first "open"
call made by a ToolTalk client. Use the ttsession com­
mand to manually start a t t s e s s ion.

ttsession responds to two signals. If it receives the
USRl signal, it toggles the trace mode on or off. If it receives
the USR2 signal, it rereads the types file.
ttsession [-A max_active_msgs] [-a level] [-d

display] [-s] [-t] [-v] [-{EIX}] [-h]

[- c command]

- A Specifies the maximum number of messages in­
progress before aTT_ERR_OVERFLOW condition is
returned. Default is 2000.

-a Set the server authentication level. The level must
be unix, xauthor des.

-d Directs t tsession to start an X session for the giv­
en display. Normally, ttsession uses the $DIS­
PLAY environment variable.

- s Silent - don't print any warning messages.

- t Turn on trace mode. Tracing is very helpful for see-
ing how messages are dispatched and delivered.
The output is very voluminous. To toggle the trace
mode on or off use the USRl signal.Iftracemodeis
turned on while t t s e s s i on is running, messages
appear on the console.

Tracing displays the state of a message when it is first seen
by t tsession. The lifetime of the message is then shown by
showing the result of matching the message against type sig­
natures (dispatch stage) and then showing the result of
matching the message against any registered message pat­
terns (delivery stage). Any attempt to send the message to a

Chapter 1. ToolTalk® Overview

www.manaraa.com

X Window System
(Including XU/NeWS)

Background and Batch
Sessions

1.1.7 Setting Up the ToolTalk Service

given process is also shown together with the success of that
attempt.

-v Print the version number and exit.

- E Read in the types from the Classing Engine data­
base. This option is the default.

- x Read in the types from the alternate XDR format da­
tabase in $HOME/. tt/types .xdr and lete/ttl
types .xdr.

- h Print help on invoking t t s e s s i on and exit.

- c Starts a process tree session and runs the given com-
mand. The special environment variable _SUN_
TT_SESSION will be set to the nameofthissession.
Any process started with this variable in the envi­
ronment will default to being in this session. If com­
mand is omitted the value of $ SHELL is used
instead. Everything after - c on the command line
is taken as the command to be executed, so - c
should be the last option.

If neither - c or - d is specified, an x session is started using
the server specified in the $DISPLAYenvironment variable.

Under the X Window System, a session is established by ex­
ecuting ttsession, either without arguments (taking the
display from the $DISPLAY environment variable) or speci­
fying the display with the -d switch.

ttsession
or

ttsession -d:O

When ttsession is invoked, it immediately forks and
the parent copy exits, so that the process managing the ses­
sion executes in the background. The session is registered as
a property, named by the atom _SUN_TT_SESSION on the
root of screen 0, giving the host and port number for commu­
nication with the process managing the session.

If your application runs as a background job, in a batch ses­
sion, or in a session bound to a character terminal, it should
do so as its own session. This can be done by using the - c
switch on ttsession:

t t s e s s i on - c command-to-run-in-batch

15

www.manaraa.com

1.1.8

Be sure to use the - c option last. Everything after - c is
read as part of the command.

Managing
ToolTalk Object
and File

To keep specs up to date with the objects they describe, the
ToolTalk service stores this information on the same file sys­
tem as the object. This means that if the object moves, its spec
must move too.

Caution - Despite the efforts of the ToolTalk service and
integrated applications, it's possible for object references
to be broken by removing, moving, or renaming files with
shell commands like mv or rm. Broken references like this
will show up as undeliverable messages.

Tell users of your application to use the ToolTalk-wrapped
shell commands listed in Table 1.1.3 for copying, moving,
and removing files referred to in messages and files contain­
ing objects.

Table 1.1.3. ToolTalk-wrapped shell commands.

Command Description

ttcp Copies file to new location. Updates file and object location information in
ToolTalk database.

ttmv Moves directory and/ or files to new location. Updates file and object location
information in ToolTalk database. Removes old version of file or directory.

ttrm Removes specified file. Removes file and object information from the ToolTalk
database.

ttrmdir Removes empty directories (directories that contain no files) that have ToolTalk
object specs associated with them. It's possible to create an object spec for a
directory. When an object spec is created, the pathname of a file or directory is
supplied. Removes object information from the ToolTalk database.

tttar Archives or extracts multiple files and object information into (or from) a single
archive, called a tarfile. Can also be used to just archive or extract ToolTalk file
and object information into (or from) a tarfile.

16 Chapter 1. ToolTalk® Overview

www.manaraa.com

1.1.9
For More
Information

These documents contain further information on the Tool­
Talk service:

Table 1.1.4. ToolTalk document roadmap.

Documents Topics Audience

Open Windows Version 3 Installation How to install the ToolTalk Advanced user, system
and StartUp Guide service administrator

ToolTalk 1.0 Setup and Administration How to setup the ToolTalk System administrator
Guide service and manage its files

Open Windows Version 3 Desktop Process-oriented messaging Software developer
Integration Guide tutorial, How to register your

ptype and otype with
SunSoft

Designing and Writing A ToolTalk How to write ToolTalk Software developer,
Procedural Protocol messages: A "Quickstart" advanced user

guide

Tool Inter-Operability: A Hands On Tool and applications inter- Software developer,
Demonstration operability examples advanced user

1.1.9 For More Information 17

www.manaraa.com

1.2
General
Application

18

To use the ToolTalk service, your application calls ToolTalk
functions from the ToolTalk API library. You begin modifying
your application to use the ToolTalk service by including the
ToolTalk API header file. After initializing and starting a ses­
sion with the ToolTalk service, you can provide additional
information to the ToolTalk service by joining files and user
sessions. When your process is ready to quit, you unregister
these patterns and close your ToolTalk session.

In addition to providing instructions on how to participate
in a ToolTalk session, this section tells you how to manage
storage of values passed in from the ToolTalk service and
how to handle errors that the ToolTalk service returns.

Modify your application to satisfy general application re-
quirements for the ToolTalk service by:

• Including the ToolTalk API FIle
• Registering With the ToolTalk Service
• Setting Up to Receive Messages
• Managing Storage
• Handling Errors
• Unregistering from the ToolTalk Service.

Note - The code samples that illustrate the calls used to per­
form the operations are mostly fragments from the sample
programs, ttsamplel and Sun_EditDemo. These sample
programs are in this directory:$OPENWINHOMEI sharel
src/tooltalkl

Chapter 1. ToolTalk® Overview

www.manaraa.com

1.2.1
Including the
ToolTalk API File

1.2.2
Registering with
the ToolTalk
Service

1.2.1 Including the ToolTalk API File

The first step in modify your application to use the ToolTalk
service is to include the ToolTalk API header file in your pro­
gram. This file, tt_c . h, lives in this directory:

$OPENWINHOME/include/desktop/

Here's how t t s amp 1 e 1 includes this file.

/*
* ttsamplel -- dynamic pattern,
* procedural notification
*/

#include <stdio.h>
#include <sys/param.h>
#include <sys/types.h>
#include <xview/xview.h>
#include <xview/panel.h>
#include <strings.h>

#include <desktop/tt_c.h>

When you register with the ToolTalk service, you have the
choice of registering in the ToolTalk session the application
was started in (the initial session) or locating another session
and registering there.

The ToolTalk functions you need to register with the
ToolTalk service are shown in Table 1.2.1.

Table 1.2.1. Initializing and registering with the ToolTalk ser­
vice.

Return Type ToolTalk Function

char * tt_open(void)

int tt_fd (void)

char * tt_X_session(const char
*xdisplay)

Tt_status tt_default_session_set(const char *sessid)

19

www.manaraa.com

Registering in the
Initial Session

20

To initialize and register your process with the initial
ToolTalk session, obtain a process identifier (procid) and a
matching file descriptor.

t t_open () returns the procid for your process, and sets
it as the default procid.

t t_fd () returns a file descriptor for your current procid
that will become active when a message arrives for your
application. See "When a message has arrived for your ap­
plication, the file descriptor becomes active. Your code for
being alerted that the file descriptor is active will vary de­
pending on how your application is structured." for in­
structions on being notified when the file descriptor is
active.

When t t_open () is the first call made to the ToolTalk
service, it sets the initial session as the default session. The
default session identifier (sessid) is important to the delivery
of ToolTalk messages. The ToolTalk service will automati­
cally fill in the default sessid if an application does not explic­
itly set the session message attribute. If the message is scoped
to TT_SESSION, the message will be delivered to all appli­
cations in the default session who have registered interest in
this type of message.

Here's sample code to initialize and register with the
ToolTalk service.

int ttfd;

/*
* Initialize ToolTalk, using the initial
* default session, and obtain the file
* descriptor that will become active whenever
* ToolTalk has a message for this process.
*/

my-procid = tt_open();
ttfd = tt_fd();

Chapter 1. ToolTalk® Overview

www.manaraa.com

Registering in a
Specified Session

1.2.3
Setting Up to
Receive Messages
XView Programs

/*

To register in a session other than the initial session, your
program must find the name of the other session, set the new
session as the default, and register with the ToolTalk service.
The calls required must be in this order:

1. Get the name of the session, e.g. use tt_X_ses­
sion () .This call retrieves the name of the session
associated with an X11 display server. tt_X_ses­
sion () takes the argument char *xdisplay_
name where the xdisplay_name is the name of an
Xll display server (e.g. somehost: 0, : 0, etc.)

2. tt_default_session_set();

3. tt_open ();

4. tt_fd();

Here's an example of how you would join an X session
called somehost: ° which is not your initial session.

char *my_session;
char *my-procid;

my_session = tt_X_session("somehost:O");
tt_default_session_set(my_session) ;
my-procid = tt_open();
ttfd = tt_fd();

When a message has arrived for your application, the file de­
scriptor becomes active. Your code for being alerted that the
file descriptor is active will vary depending on how your ap­
plication is structured.

A program that uses the XView notifier, through xv _ -
main_loop () or notify_start (), can have a callback
function invoked when the file descriptor becomes active. In­
vokenotify_set_input_func () with the handle for the
message object as a parameter.

Here's an example of an XView program setting up to receive
messages.

* Arrange for XView to call receive_tt_message when the ToolTalk file
* descriptor becomes active.
*/

notify_set_input_func(base_frame,
(Notify_func)receive_tt_message,
ttfd) ;

1.2.3 Setting Up to Receive Messages 21

www.manaraa.com

X Window System Xt
(Intrinsics) Programs

TNT Programs

Other Xlib Programs

1.2.4
Managing Storage

Information You
Provide to the
ToolTalk Service

Information Provided
by the ToolTalk
Service

22

An Xt-based program uses XtAddInput () to watch for ar­
riving messages.

An TNT-based program uses wire_AddFileHandler ()
to watch for arriving messages.

Programs structured around a s e 1 ec t (2) or po II (2) sys­
tem call use the file descriptor returned by t t_f d () .

After the select call exits with this file descriptor active,
use t t_message_recei ve () to obtain a handle for the in­
coming message.

The ToolTalk service simplifies your application storage
management by providing you a copy of the information it
returns to you and by copying all information your applica­
tion provides to the ToolTalk service.

When you provide a pointer to the ToolTalk service, it copies
the information referenced by the pointer. You can then dis­
pose of the information you provided; the ToolTalk service
won't use the pointer again to retrieve the information.

The ToolTalk service provides an allocation stack in the
ToolTalk API library that it uses to store information persis­
tently that it gives to you. For example, if you asked for the
sessid of the default session with tt_default_ses­
sian () , the ToolTalk service returns the address of the char­
acter string in the allocation stack (a char * pointer) that
contains the sessid. When you have retrieved the sessid, dis­
pose of the character string to clean up the allocation stack.

Note - The API allocation stack should not be confused with
your program's run-time stack. The API stack will not dis­
card information until you tell it to.

The ToolTalk service provides the calls listed in Table 2.2
to manage the storage of information in the ToolTalk API al­
location stack:

Table 1.2.2. Using ToolTalk storage.

Return Type ToolTalk Function

int tt_mark(void)

void ttJelease(int mark)

Chapter 1. ToolTalk® Overview

www.manaraa.com

/*

Return. Type ToolTalk Function

void tUree(caddr_tp)

caddr_t tt_malloc(size_t s)

The tt_mark () and tt_release () functions, used to
mark and free information returned by a series of functions,
are a general mechanism to help you easily manage storage.
The tt_mark () and tt_release () functions are typi­
cally used at the beginning and end of a routine where the
information returned by the ToolTalk service is no longer in­
teresting after the routine has ended.

To ask the ToolTalk service to mark the beginning of your
storage space, use t t_mar k () . The ToolTalk service returns
a mark, an integer that represents a location on the API stack.
All the information that the ToolTalk service subsequently
returns to you will be stored in locations that come after the
mark. When you no longer need the information, call
tt_release () and specify the mark that signifies the be­
ginning of the information you no longer need.

In the following example, ttsamplel calls tt_mark ()
at the beginning of the routine that examines the information
in a message. When the information examined in the routine
is no longer needed and the message has been destroyed,
tt_release () is called with the mark to free storage on the
stack.

* Get a storage mark so we can easily free all the data
* ToolTalk returns to us.
*/

mark = tt_mark();

if (O==strcmp ("ttsamplel_value", tt_message_op (msg_in)))
tt_message_arg_ival(msg_in, 0, &val_in);
xv_set (gauge, PANEL_VALUE, val_in, NULL);
}

tt_message_destroy(msg_in) ;
tt_release(mark) ;
return;

1.2.4 Managing Storage 23

www.manaraa.com

Special Case: Callback and
Filter Routines

24

t t _rna 11 ° c () reserves a specified amount of storage in
the allocation stack for your use. You could use tt_rnal­
loc () within a filter routine used by the ToolTalk file query
function, tt_file_objects_query (). This function re­
turns all the objects in a file and runs it through a filter routine
that you provide. Your filter routine may be looking for a spe­
cific object. Once your filter routine finds the object you were
looking for, use tt_rna11oc () to create a storage location
and copy the object into the location. When your filter func­
tion returns, the ToolTalk service will free all storage used by
the objects in the file, but the object you stored via t t_rnal­
loc () will be available for further use. The way that the
ToolTalk service behaves toward information passed into fil­
ter functions (and callbacks) is a special case. In all other in­
stances, the ToolTalk service stores the information in the API
allocation stack until you free it. See "One of the features of
the ToolTalk service is callback support for messages, pat­
terns, and filters. Callbacks are routines in your program that
ToolTalk calls when a particular message arrives (message
callback) or when a message matches a particular pattern
you registered (pattern callback), When you call file query
functions such as tt_file_objects_ queryO, you point to a filter
routine that the ToolTalk service calls as it returns items from
the query. You tell the ToolTalk service about these callbacks
by adding the callback to a message or pattern before sending
the message or registering the pattern. When you call tt_fi­
le_objects_ queryO, you provide the filter routine as an argu­
ment." for more information. To free storage set aside by
tt_rnalloc (), use tt_free ().

To free storage of individual objects that the ToolTalk ser­
vice provides you pointers to, use t t_free () . For example,
if you asked for the sessid of the default session with t t_de­
faul t_session (), you could free up the space in the API
allocation stack that stores the sessid with t t_f ree () after
you have examined the sessid. t t_free () takes an address
in the allocation stack (a char * pointer or an address re­
turned from t t_rna11oc ()) as an argument.

One of the features of the ToolTalk service is callback support
for messages, patterns, and filters. Callbacks are routines in
your program that ToolTalk calls when a particular message
arrives (message callback) or when a message matches a par­
ticular pattern you registered (pattern callback), When you
call file query functions such as tt_file_objects_

Chapter 1. ToolTalk® Overview

www.manaraa.com

1.2.5
Handling Errors

1.0

query (), you point to a filter routine that the ToolTalk ser­
vice calls as it returns items from the query. You tell the
ToolTalk service about these callbacks by adding the callback
to a message or pattern before sending the message or regis­
tering the pattern. When you call tt_file_objects_
query (), you provide the filter routine as an argument.

Callback and filter routines called by the ToolTalk service
are called with two kinds of arguments:

• context arguments
The arguments you passed in to the API call that trig­
gered the callback. These arguments point to items
your application owns.

• pointers to API objects
The address of message or pattern attributes in stor­
age.

The context arguments are passed through from the
ToolTalk service to your application. The API objects refer­
enced by pointers are freed by the ToolTalk service as soon as
your callback or filter function returns. If you want to keep
any of these objects, be sure to copy the objects before your
function returns.

Rather than have ToolTalk functions return error status in a
global variable, the ToolTalk service returns error status in
the function's return value. For example, the return value for
t t_defaul t_session_set () is a Tt_status code. If
the ToolTalk service sets the default session to the sessid you
specified without a problem, the Tt_status code is TT_OK.
If a problem was encountered, the ToolTalk service would
return another Tt_status code, TT_ERR_SESSION, to let
you know the sessid you passed was not valid.

If a ToolTalk function has a natural return value such as a
pointer or an integer, a special error value is returned instead
of the real value. For example, the return value for
t t_open () is a pointer to a procid. If the ToolTalk service
could not respond to your application's t t_open () call, it
returns a pointer to a Tt_status code instead of a valid
procid. With the ToolTalk error handling functions, you
check the pointer to see if it's pointing to a valid procid or a
Tt_status code. If the pointer is to a valid procid, the
checking function returns TT_OK.

25

www.manaraa.com

Checking Returned
Tt status

Use the ToolTalk functions listed in Table 1.2.3 and the
ToolTalk macros listed in Table 1.2.4 to check for and retrieve
error values

ToolTalk functions with no natural return value just return
anelementoftheTt status enum. Use the ToolTalk macro
t t_i s_err () , which returns an integer, to see if there was
a warning or an error. If you receive 1, the Tt_status enum
is an error. If you receive 0, the It_status enum is a warning.
If there is an error, you can obtain the character string ex­
plaining the Tt_status code with tt_status_mes­
sage () as shown in the following example.

Table 1.2.3. Retrieving ToolTalk error status.

Return Type ToolTalk Function

char * tt_status_message(Tt_status ttrc)

Tt - status tt_int_error(int return_val)

Table 1.2.4. ToolTalk error macros.

Return Type ToolTalk Macro Expands to

Tt - status tt_ptr_error(pointer tt_pointer_error((void
) *) (p))

Tt - status tt_is_err(pointer) (TT_WRN_LAST < (p))

char *spec_id, my_application_name;
Tt_status tterr;

tterr = tt_spec_write(spec_id);
if (tt_is_error(tterr)) {
fprintf(stderr, "%s: %s\n", my_application_name,
tt_status_message(tterr)) ;
}

Checking Returned
Pointers

26

When an error occurs during a ToolTalk function that returns
a pointer, the ToolTalk service provide an address within the
ToolTalkAPI library containing the appropriate Tt_status
code. Use the ToolTalk macro t t_ptr_error () to find out
if the pointer is valid. If the pointer is an error value, use
t t_status_message () to get the Tt_status code

Chapter 1. ToolTalk® Overview

www.manaraa.com

string. The following sample code checks a pointer to see if
it's an error value. If it is, the character string describing the
Tt_status code is retrieved and printed.

char *old_spec_id, new_file, new_specid, my_application_name;
Tt_status tterr;

new_spec_id = tt_spec_move(old_spec_id, new_file);
tterr = tt-ptr_error(new_spec_id);
swi tch (t terr) {

case TT_OK:
/*

* Replace old_spec_id with new_spec_id In my internal
* data structures.
*/

update_my_spec_ids(old_spec_id, new_spec_id);
break;

case TT_WRN_SAME_OBJID:
/*

* The spec must have stayed in the same filesystem,
* since ToolTalk is reusing the spec id. Do nothing.
*/

break;
case TT_ERR_FILE:
case TT_ERR_ACCESS:
default :

fprintf(stderr, "%s: %s\n", my_application_name,
tt_status_message(tterr)) ;
break;

Checking Returned
Integers

ToolTalk functions that return integers return wildly out-of­
bounds values for errors. t t_int_error () will return
TT_OK if the value is not wildly out of bounds. If a value is
out of bounds, use tt_is_error () to determine if an error
or a warning occurred. To retrieve the catalog string for a
Tt_status code, use tt_status_message (). Here's
sample code that checks a returned integer.

1.2.5 Handling Errors 27

www.manaraa.com

Tt_message msg;
int num_args;
Tt_status tterr;
char *my_application_name;

num_args = tt_message_args_count(msg);
tterr = tt_int_error(num_args);
if (tt_is_error(tterr)) {
fprintf(stderr, "%s: %s\n", my_application_name,
tt_status_message(tterr)) ;
}

Error Propagation

1.2.6
Unregistering
from the ToolTalk
Service

28

Any ToolTalk functions that accept pointers always check the
pointer passed in and return TT_ERR_POINTER if the
pointer is an error value. This allows you to combine calls in
reasonable ways without having to check after every sin­
gle call.

In the following example, a message is created, filled in,
and sent. If t t_message_create () fails, an error object is
assigned to m, and all the tt_message_xxx_set () and
tt_message_send () calls fail. Check the return code from
t t_message_send () to detect the error without having to
check between each call.

Tt_message m;

m=tt_message_create();
tt_message_op_set (m, "OP") ;
tt_message_address_set(m,TT_PROCEDURE) ;
tt_message_scope_set(m,TT_SESSION) ;
tt_message_class_set(m,TT_NOTICE) ;
tt_rc=tt_message_send(m) ;
if (tt_rc!=TT_OK) ...

Use tt_close () when you want to stop interacting with
the ToolTalk service and other ToolTalk session participants.
tt_close () returns Tt_status and closes the current de­
fault procid.

/*

* Before leaving, allow ToolTalk to clean up.
*/

tt_close () ;

exit (0);

}

Chapter 1. ToolTalk® Overview

www.manaraa.com

1.3
Message
Patterns

1.3 Message Patterns

This section describes how to provide message pattern infor­
mation to the ToolTalk service. The ToolTalk service uses
message patterns to determine message recipients. After re­
ceiving a message, the ToolTalk service compares the mes­
sage to all current message patterns to find a matching
pattern. Once a match is made, the message is delivered to
the application listed in the message pattern. See Section 3.1
for a description of the information you can put into a mes­
sage pattern.

You can provide message pattern information to the
ToolTalk service using static and/or dynamic methods. To
use the static method, define your ptype and otypes (if you
create ToolTalk objects) and compile them with the ToolTalk
type compiler, tt_type_comp. tt_type_comp stores
your type information in the Classing Engine, a Open Wm­
dows desktop type database. When you declare your ptype,
the ToolTalk service creates message patterns based on your
type information. These static message patterns will remain
in effect until you close communication with the ToolTalk
service.

To inform other applications of your ptype and otypes, use
sunSoft's Vendor Data Type Registration program. See the
Open Windows Version 3 Desktop Integration Guide for more in­
formation.

To provide message pattern information while your appli­
cation is running (dynamic method), create a message pat­
tern and register it with the ToolTalk service. You can add
callback routines to dynamic message patterns that the
ToolTalk service will call when it matches a message to this
pattern. You can register and unregister dynamic message
patterns as needed.

29

www.manaraa.com

1.3.1
Message Pattern
Attributes

30

You choose the static and/ or dynamic method depending
on the type of messages you want to receive. If you want to
receive a defined set of messages, the static method provides
an easy way to specify the message pattern information.
Since type information is only specified once (when your ap­
plication is installed), your application just needs to declare
its ptype each time it starts.

Use the static method of providing message pattern infor-
mation by:

• Defining Your Process Type
• Defining Your Object Types (if creating objects)
• Installing Your Type Information
• Declaring Your Process Type

If the types of messages you want to receive will vary
while your application is running, the dynamic method pro­
vides the means to add, change, or remove message pattern
information after your application is started.

Use the dynamic method of providing message pattern in-
formation by:

• Creating Message Patterns
• Filling Message Patterns
• Attaching Pattern Callbacks
• Registering Message Patterns
• Deleting Message Patterns

Regardless of the method you choose to provide message
patterns to the ToolTalk service, you will want to update
these patterns with your current session and file information
so that you receive all messages that refer to the session or
file in which you are interested. "Updating Message Patterns
With THe Current Session Or File," Section 3.4, describes
how to join sessions and files to update your message pat­
terns.

The attributes in your message pattern specify the type of
messages you want to receive and, to some extant, the num­
ber of messages you receive. Here's how the ToolTalk service
behaves when comparing message attributes to pattern at­
tributes.

Chapter 1. ToolTalk@Overview

www.manaraa.com

• If no pattern attribute is specified, the ToolTalk service
counts the message attribute as matched. The fewer pat­
tern attributes you specify, the more messages you be­
come eligible to receive.

• If there are multiple values specified for a pattern at­
tribute, one of the values must match the message at­
tribute value. If no value matches, the ToolTalk service
will not consider your application as a receiver.

In all of your message patterns, you must specify these
attributes at the minimum:

• scope
• category

See Table 1.3.1 for a complete list of attributes you can put
in your message patterns.

Table 1.3.1. ToolTalk message pattern attributes.

Pattern Attribute Value Description

category TT_OBSERVE,TT_HANDLE, Do you want to perform the
operation listed in a message or
just view a message?

scope TT_SESSION,TT_FILE, Are you interested in messages
TT_BOTH, about a session and/ or a file? Goin
TT_FILE - IN_SESSION a session and/ or file after the

message pattern is registered to
update the sessid and filename.)

arguments arguments or results What arguments are used for the
operation in which you are
interested?

class TT_NOTICE,TT_REQUEST Do you want to receive notices
and/ or requests?

file char *pathname What file should be mentioned in a
message?

object char *objid What object should be mentioned
in a message?

operation char *opname What operation should be
mentioned in a message?

otype char *otype What type of object interests you?

1.3.1 Message Pattern Attributes 31

www.manaraa.com

Pattern Attribute Value Description

address TT_PROCEDURE, TT_OBJECT, What type of address should a
TT_HANDLER,TT_OTYPE message contain?

disposition TT_DISCARD, TT_QUEUE, What should the ToolTalk service
TT_START do when it can't deliver a message

to your application?

sender char *procid What sender interests you?

sender_ptype char *ptype What type of sending process
interest you?

session char *sessid What session should be mentioned
in a message?

state TT_CREATED, TT_SENT, In what state should the message
TT_HANDLED,TT_FAILED, be?
TT_QUEUED,TT_STARTED,
TT_REJECTED

1.3.2
Static Message
Patterns

Note - The code samples that illustrate the calls used to per­
form the operations are mostly fragments from the sample
program, Sun_Edi tDemo. This sample program can be
found in this directory:
$OPENWINHOME/share/src/tooltalk/

Defining Your
Process Type

32

The process type (ptype) provides application information
that the ToolTalk service can use when the application isn't
running. This information is used to start your process if nec­
essary to receive a message, queue messages until it starts, or
deliver ptype scoped messages to your process.

A ptype begins with an identifier known as a ptid. The
optional start string following the ptid is a command that the
ToolTalk service will execute to start a process running the
program.

Following the start string are signatures describing the
procedure and process messages that the program wishes to
receive. Messages to be observed are described separately
from those to be handled. A signature is divided into two

Chapter 1. ToolTalk@Overview

www.manaraa.com

Syntax

1.3.2 Static Message Patterns

parts by an arrow (=». The first part specifies matching at­
tribute values. The more attribute values specified in a signa­
ture, the fewer messages the signature will match.

The second part of a signature (after the arrow) specifies
receiver values that the ToolTalk service will copy into mes­
sages that match the first part of the signature. A ptype sig­
nature can contain values for disposition and opnum. The
ToolTalk service uses the disposition value (start, queue, or
the default discard) to determine what to do with a message
that matches the signature when no process is running the
program. The opnum value is provided as a convenience to
message receivers. When two signatures have the same op­
eration name but different arguments, giving them different
opnums makes incoming messages easy to identify.

Here's the syntax for a ptype:

ptype

property
property_id

::= 'ptype' ptid '{'
property*
['observe:' psignature *]
['handle:' psignature* 1
, }' [';']

: : = property_id value
::= 'per_file'
I 'per_session'

'start'

'. , ,

value : : = string
I number

ptid : : = identifier
psignature ::= [scope] op args

scope

args

argspec
mode
type
name

['=>'

[' start'] [' queue']
['opnum='number]]
'. , ,

.- 'file'
'session'
'file_in_session'

: : = ' (' argspec {, argspec} * ')'
'(void) ,
, () ,

: : = mode type name
: : = 'in' I 'out' , inout'
::= identifier
. - identifier

33

www.manaraa.com

Semantics

34

Property _id Information

ptid
process type identifier (ptid). A ptid must be unique for
every installation. This identifier cannot be changed
after installation time, so it is important that a unique
name be chosen. Use a name that includes the trade­
marked name of your product or company, such as
Sun_Edi tDemo. Also use a few upper-case letters to
help make your ptid unique. The ptid cannot exceed
32 characters, and should not be one of the reserved
identifiers ptype, otype, per_f i Ie, per_session,
start, opnum, queue, file, session, observe, or
handle.

per_file
The maximum number of processes of this type that
can concurrently observe a particular file. If this many
processes of this type are already observing a docu­
ment, the ToolTalk service will not start another pro­
cess of this type.

Tools that cannot handle multiple processes updating the
same file should set this limit to 1.

pecsession
The maximum number of processes of this type that
can concurrently run in a single session. If this many
processes of this type are already running in a session,
the ToolTalk service will not start another process of
this type.

Tools that manage multiple documents in one process
should set this limit to 1 so that all documents will be handled
by a single process in each user session.

start
Start string for the process. If the ToolTalk service
needs to start a process, it executes this command; I
bini sh is used as the shell. Before executing the com­
mand, the ToolTalk service defines TT_FILE as an en­
vironment variable with the value of the file attribute
of the message that caused the application to be start­
ed. The started command runs in the environment of
ttsession, not in the environment of the sender of
the message that caused the start, so any context infor­
mation must be carried by message arguments.

Chapter 1. ToolTalk@Overview

www.manaraa.com

Psignature Matching Information

op
Operation name. This is matched against the op at­
tribute in messages.

args
Arguments for the operation. If the args list is
(va i d) , the signature matches only messages with

no arguments. If the args list is empty (just "0"), the
signature matches without regard to the arguments.

scope
This pattern attribute is matched against the scope at­
tribute in messages.

Psignature Actions Information

start
If the psignature matches a message, and no running
process of this ptype has a pattern that matches the
message, start a process of this ptype.

queue
If the psignature matches a message, and no running
process of this ptype has a pattern that matches the
message, queue the message until a process of this
ptype registers a pattern that matches it.

opnum
Fill in the message's opnum attribute with the speci­
fied number. The opnum allows you to specify an op­
eration more than once and list unique arguments
with each instance of the operation.

Here's the ptype from the Sun_EditDemo program::

#include "Sun_EditDemo_opnums.h"

ptype Sun_EditDemo {
/* setenv SUN_EDITDEMO_HOME to install dir for the demo */

start "${SUN_EDITDEMO_HOME}/edit";
handle:
/* edit file named in message, start editor if necessary */

session Sun_EditDemo_edit(void)
=> start opnum=SUN_EDITDEMO_EDIT;

/* tell editor viewing file in message to save file */

session Sun_EditDemo_save(void)
=> opnum=SUN_EDITDEMO_SAVE;

1.3.2 Static Message Patterns 35

www.manaraa.com

} ;

/* save file named in message to new filename */

session Sun_EditDemo_save_as(in string new_filename)
=> opnum=SUN_EDITDEMO_SAVE_AS;

/* bring down editor viewing file in message */
session Sun_EditDemo_close(void)

=> opnum=SUN_EDITDEMO_CLOSE;

The Sun_Edi tDemo_opnums . h file defines symbolic
definitions for all the opnums used by edi t . c. This allows
both the edi t . types file and edi t . c file to share the same
definitions.

Defining Your Object
Types

The otypes for your application provide addressing informa­
tion that the ToolTalk service uses when delivering object­
oriented messages.

Syntax

36

The number of otypes you have, and what they represent,
depends on the nature of your application. A word process­
ing application might have otypes for characters, words,
paragraphs, and documents. A diagram editing application
might have otypes for nodes, arcs, annotation boxes, and di­
agrams.

An otype is very similar to a ptype, consisting of a type
identifier and a list of signatures. The signatures define the
messages that can be addressed to objects of the type (that is,
the operations that can be invoked on objects of the type).

Each signature is divided into two parts separated by an
arrow (=». The values preceding the arrow define matching
criteria for incoming messages. The values listed after the ar­
row are receiver values which the ToolTalk service adds to
each message that matches the first part of the signature. An
otype writer uses these values to specify the ptid of the pro­
gram that implements the operation, as well as the message's
scope and disposition.

Here's the syntax for an otype:

otype
[';']

obj_header
objbody

: : = obj_header' {' objbody* '}'

::='otype' otid [':' otid+]
::= 'observe:' osignature*

'handle:' osignature*

Chapter 1. ToolTalk@ Overview

www.manaraa.com

Semantics

1.3.2 Static Message Patterns

osignature
rhs

: :=op args [rhs] [inherit]
::= ['=>' ptid [scope]]

'. , ,

['start'] ['queue']
['opnum='number]

inherit
args

::= 'from' otid
: : = ' (' argspec {, argspec} * ')'

I '(void)'
I ' () ,

argspec
mode
type
name
otid
ptid

: : = mode type name
: : = 'in' I 'out'
: : = identifier
: : = identifier
: : = identifier
: : = identifier

'inout'

ObLHeader Information

otid
Identifies the object type. An object type identifier (otid)
must be unique for every installation. This identifier
cannot be changed after installation time, so it is im­
portant that a unique name be chosen. It is recom­
mended that the name begin with the ptid of the tool
that implements the otype. The otid is limited to 64
characters, and should not be one of the reserved iden­
tifiers ptype, otype, per_file, per_session,
start, opnum, start, queue, file, session,
observe, or handle.

Osignature Information. The object body portion of the
otype definition is a list of osignatures for messages about the
object that your application wants to observe and handle.
The osignatures contain many of the same fields as a psigna­
ture found in a ptype.

op
Operation name. This is matched against the op at­
tribute in messages.

args
Arguments for the operation. If the args list is
(void), the signature matches only messages with

no arguments. If the args list is empty (just "0"), the
signature matches without regard to the arguments.

ptid
Process type identifier for the application that manag­
es this type of object.

37

www.manaraa.com

opnum
Fill in the message's opnum attribute with the speci­
fied number. The opnum allows you to specify an op­
eration more than once and list unique arguments
with each instance of the operation.

inherit
otypes form an inheritance hierarchy where opera­
tions can be inherited from base types. The ToolTalk
service requires the otype definer to name explicitly
all inherited operations and the otype to inherit from.
This prevents later changes (like adding a new level to
the hierarchy, or adding new operations to base types)
from unexpectedly affecting the behavior of an otype.

The other elements of the otype definition (scope, queue,
and start) have the same meaning as in ptype definitions, ex­
cept that scope and message class appear on the right hand
side of the arrow and are filled in by the ToolTalk service dur­
ing message dispatch. This allows the definer of the otype to
specify the attributes instead of requiring the message sender
to know how the message should be delivered.

Here's the otype definition from the Sun_Edi tDemo ed­
it. types file:

#include "Sun_EditDemo_opnums.h"
otype Sun_EditDemo_object {

} ;

handle:
/* hilite object given by objid, starts an editor if necessary */
hilite_obj (in string objid)

=> Sun_EditDemo session start opnwm=SUN_EDITDEMO_HILITE_OBJ;

The Sun_Edi tDemo_opnums . h file defines symbolic
definitions for all the opnums used by edi t . c. This allows
both the edi t . types file and edi t . c file to share the same
definitions.

Installing Your Type
Information

In order for applications to be started and to have messages
queued, the ptype definition must be put into the Classing
Engine. To receive messages addressed to objects your appli­
cation creates and manages, the otype definitions must also
be installed in the Classing Engine. The Classing Engine
makes ptype and otype information available on the host ex­
ecuting the sending process, the host executing the receiving
process, and the hosts running the sessions to which the pro­
cesses are joined.

38 Chapter 1. ToolTalk® Overview

www.manaraa.com

Declaring Your
Process Type

1.3.2 Static Message Patterns

To get your type information into the Classing Engine and
available to the ToolTalk service, run the ToolTalk type com­
piler on your type file(s). This compiler creates Classing En­
gine definitions for your type information and stores them in
the Classing Engine database.

Here are the steps:

1. Run tt_type_comp on your ptype file.
% tt_type_comp <your-file>

t t_type_comp runs your-file through cpp, compiles the
type definitions, and merges the information into the Class­
ing Engine tables. By default, t t_type_comp will use the
user's Classing Engine tables. To specify otherwise, use the
-d option

% tt_type_comp -duserlsystemlnetwork

and specify one of the following:

user uses
system uses
network uses

~/.cetables/cetables

letclcetables/cetables
$OPENWINHOME/lib/ce-
tables/cetables

For more information on t t_type_comp, see t t_ -
type_comp (1) .

After running t t_ type_comp, tell the ToolTalk service to
read the type information in the Classing Engine database.
This will make your type information available to the
ToolTalk service. To do this, follow these steps:

2. Find out the process identifier of the ttsession
process.
% ps -aux I grep ttsession

3. Send ttsession a SIGUSR2 signal.
% kill -USR2 dtsession pid>

To register your ptype with the ToolTalk service, use t t_p­
type_declare () during your application's ToolTalk ini­
tialization routine. The ToolTalk service will read the type
information and create the message patterns listed in your
ptype and any of your otypes that reference the specified
ptype.

39

www.manaraa.com

/*

Note - The message patterns created by declaring your
ptype cannot be unregistered with ttJ)attern_unreg­
ister().

Here, Sun_EditDemo registers its ptype during its ed­
it. c program initialization ..

* Initialize our ToolTalk environment.
*/

int
edit_init_tt ()
{

40

int
char
int
void

mark

mark;
*procid = tt_open();
ttfd;
edit_receive_tt_message() ;

if (tt-pointer_error(procid) != TT_OK) {
return 0;

if (tt-ptype_declare("Sun_EditDemo") != TT_OK) {

ttfd

fprintf(stderr, "Sun_EditDemo is not an installed ptype.\n");
return 0;

notify_set_input_func(edit_ui_base_window,
(Notify_func)edit_receive_tt_message,
ttfd) ;

/*

* Note that without tt_mark() and tt_release(), the above
* combination would leak storage -- tt_default_session() returns
* a copy owned by the application, but since we don't assign the
* pointer to a variable we cannot not free it explicitly.
*/

tt_release(mark) ;
return 1;

Chapter 1. ToolTalk® Overview

www.manaraa.com

1.3.3
Dynamic Message
Patterns

To create and register a pattern, allocate a new pattern object,
fill in the proper information, and register it. When you are
done with the pattern (when you are no longer interested in
messages that match it), either unregister or destroy the pat­
tern.

Note - The code samples that illustrate the calls used to per­
form the operations are mostly fragments from the sample
program, t t s amp 1 e 1. This sample program lives in this di­
rectory:
$OPENWINHOME/share/src/tooltalk/

The ToolTalk functions used to create, register, and unreg­
ister dynamic message patterns are listed in Table 1.3.2

Table 1.3.2. Creating, updating, and deleting message patterns.

Return Type ToolTalk Function

Tt_pattern tt_pattern_create(void)

Tt_status tt_pattern_arg_add(Tt_pattern p, Tt_mode n, const char *vtype, const char
*value)

Tt_status tt_pattern_bar~add(Tt_pattern m, Tt_mode n, const char *vtype, const
unsigned char *value, int len)

Tt_status tt_pattern_iarg_add(Tt_pattern m, Tt_mode n, const char *vtype, int value)

Tt_status tt_pattern_address_add(TCpattern p, TCaddress d)

Tt_status tt_pattern_callback_add(Tt_pattern m, Tt_message_callback f)

Tt_status tt_pattern_category _set(Tt_pattern p, Tt_category c)

Tt_status tCpattern_class_add(Tt_pattern p, Tt_class c)

Tt - status tt_pattern_disposition_add(Tt_pattern p, Tt_disposition r)

Tt_status tt_pattern_file_add(Tt_pattern p, const char *file)

Tt_status tt_pattern_object_add(Tt_pattern p, const char *objid)

Tt_status tt_pattern_op_add(Tt_pattern p, const char *opname)

Tt_status tt_pattern_opnum_add(Tt_pattern p, int opnum)

Tt_status tt_pattern_otype_add(Tt_pattern p, const char *otype)

1.3.3 Dynamic Message Patterns 41

www.manaraa.com

Return Type ToolTalk Function

Tt_status tt_pattern_scope_add(Tt_pattern p, Tt_scope s)

Tt_status tt_pattern_sender_add(TCpattern p, const char *procid)

Tt_status tt_pattern_sender_ptype_add(Tt_pattern p, const char *ptid)

Tt_status tt_pattern_session_add(TCpattern p, const char *sessid)

Tt_status tCpattern_state_add(Tt_pattern p, Tt_state s)

Tt_status tt_pattern_user_set(Tt_pattern p, int key, void *v)

Tt_status tt_patternJegister(Tt_pattern p)

Tt_status tt_pattern_ unregister(Tt_pattern p)

Tt_status tt_pattern_destroy(TCpattern p)

Creating a Message
Pattern

To get a "handle" or "opaque pointer" to a new pattern ob­
ject, use ttJ)attern_create (). Use this handle on suc­
ceeding calls to reference the pattern.

42

To fill in pattern information, use the tt_pattern_<at­
tribute>_add() and tt_pattern_<attribute>_set()
calls. See Table 1.3.1 for a complete list of pattern attributes.

Note - You can supply multiple values for each attribute
you add to a pattern (some attributes are set and only have
one value). The pattern attribute matches a message at­
tribute if any of the values in the pattern match the value in
the message. If no value is specified for an attribute, the
ToolTalk service assumes that you want any value to match.

The following pattern attributes must always be supplied:

• Category
Use TT_OBSERVE if you just want to look at messages.
Use TT_HANDLE if you want to handle the message.

• Scope
Use TT_SESSION to receive messages from other pro­
cesses in your session. Use TT_FILE to receive mes­
sages about the file you've joined. Use
TT_FILE_IN_SESSION to receive messages for the
file you've joined while in this session.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Adding a Message
Pattern Callback

Registering a
Message Pattern

/*

Note - Note: Messages that have a TT_BOTH scope will
match your pattern if it has either TT_FILE or TT_SESSION.

You can add callbacks to message patterns so when the
ToolTalk service matches a message, it automatically calls
your callback routine to examine the message and take ap­
propriate actions. Use tt-pattern_callback_add () to
add a callback routine to your pattern.

When a message that matches a pattern with a callback is
delivered to you, it is processed via the callback routine and
when the routine is finished, it should return TT_CALL­

BACK_PROCESSED. Be sure to destroy the message when
you return TT_CALLBACK_PROCESSED to free the storage
used by the message. Use t t_message_destroy () to de­
stroy the message.

Here's a code fragment to illustrate this requirement:

Tt_callback action
sample_msg_callback(Tt_message m, Tt-pattern p)
{

. .. process the msg ...

tt_message_destroy(m) ;
return TT_CALLBACK_PROCESSED;

When the pattern is complete, register it with t t_pa t­
tern_register (), and join the sessions or files you spec­
ified.

Here's how t tsamplel creates and registers a pattern:

* Create and register a pattern so ToolTalk knows we are interested
* in "ttsamplel_value" messages within the session we join.
*/

pat = tt-pattern_create();
tt-pattern_category_set(pat, TT_OBSERVE);
tt-pattern_scope_add(pat, TT_SESSION);
tt-pattern_op_add(pat, "ttsamplel_value");
tt-pattern_register(pat);

Deleting Message
Patterns

To stop receiving messages that match a message pattern, use
tt_pattern_unregister () to unregister the pattern or
tt_pattern_destroy () to unregister and then destroy
the pattern object.

1.3.3 Dynamic Message Patterns 43

www.manaraa.com

1.3.4
Updating
Message Patterns
with the Current
Session or File

Join the Default
Session

Table 1.3.3. Joining sessions.

Return Type

Note - If delivered messages that matched the pattern just
removed have not been retrieved by your application (for
example, the messages might be queued), the ToolTalk ser­
vice does not destroy these messages.

The ToolTalk service will automatically unregister and de­
stroy all message pattern objects when tt_close () is
called.

To update your message patterns with the session and/ or file
you are currently interested in, join the session and/ or file.

If you have declared a ptype or registered a message pattern
that specifies TT_SESSIONor TT_FILE_IN_SESSION, you
will want to join the default session using tt_session_­
join () so the ToolTalk service can update your message
pattern with the default sessid. When your patterns are up­
dated, you will begin to receive messages scoped to the ses­
sion you joined.

Note - If you had previously joined a session and then reg­
istered a ptype or a new message pattern, you must join the
same session or a new session before you will receive mes­
sages that match your new patterns.

Use the ToolTalk functions listed in Table 1.3.3 to join the
session in which you are interested.

ToolTalk Function

char * tt_ defaul t_session(void)

It_status tt_default_session_set(const char *sessid)

char * tUnitial_session(void)

44 Chapter 1. ToolTalk® Overview

www.manaraa.com

Return Type

Tt_status

Tt_status

ToolTalk Function

tt_sessionjoin(const char *sessid)

tt_session_quit(const char *sessid)

Here's how ttsamplel joins the default session.

/*

* Join the default session
*/

When you no longer want to receive messages that refer
to the default session, inform the ToolTalk service with t t_ -
session_quit (). The sessid will be removed from your
session-scoped message patterns.

Join Files Of Interest If you have declared a ptype or registered a message pattern
that specifies TT_FILE or TT_FILE_IN_SESSION, you will
want to join files you are interested in by calling t t_f i 1 e_ -
join () . Joining a file automatically adds the name of the file
to all of your file-scoped message patterns. Use the ToolTalk
functions listed in Table 1.3.4 to express your interest in spe­
cific files.

When you are no longer interested in receiving messages
that refer to the file, call tt_file_quit (). The file name
will be removed from your file-scoped message patterns.

Table 1.3.4. Joining files.

Return Type ToolTalk Function

char * tt_default_file(void)

Tt_status tt_default_file_set(const char *docid)

Tt_status tUilejoin(const char *filepath)

Tt_status tt_file_quit(const char *filepath)

1.3.4 Updating Message Patterns with the Current Session or File 45

www.manaraa.com

1.4
Sending
Messages

1.4.1
ToolTalk
Messages
Message Attributes

Addressing

46

This section provides the ToolTalk message attributes, ex­
plains how messages are routed, and describes how to create
messages, fill in message contents, attach callbacks to re­
quests, and send messages.

To send ToolTalk messages, modify your application to
support these operations:

• Creating and Filling In Messages
• Attaching Message Callback to Requests
• Sending Messages

ToolTalk messages contain attributes that store message in­
formation and provide delivery information to the ToolTalk
service. ToolTalk uses this delivery information to route the
messages to the appropriate receivers.

ToolTalk messages are simple structures containing at­
tributes for address, subject (operation and arguments), and
delivery information (class and scope.) Each message contains
attributes from Table 1.4.1.

Messages addressed to other applications can be addressed
to a particular process (process address) or any process that
has registered a pattern that matches your message (proce­
dure address). When addressing a message to a process, you
need to know the process identifier (procid) of the other ap­
plication. Applications receive a procid when they open com­
munication with ToolTalk. The procid is unique within the
user's session in which the application was started.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Table 1.4.1. ToolTalk message attributes.

Message
Value Description Who Can

Attribute Fill In

arguments arguments or results Arguments used in the sender, replier
operation. If the message is a
reply, this field contains the
results of the operation.

class TT_NOTICE, Specifies whether the recipient sender
TT_REQUEST needs to perform an operation.

file char *pathname The file involved in the sender,
operation. ToolTalk

object char *objid The object involved in this sender,
operation. ToolTalk

operation char *opname Name of operation to be sender
performed.

otype char *otype The type of object involved in sender,
this operation. ToolTalk

address TT_PROCEDURE, Where the message should be sender
TT_OBJECT, sent.
TT_HANDLER,
TT_OTYPE

handler char *procid The receiving process. sender,
ToolTalk

handler _ptype char *ptype The type of receiving process. sender,
ToolTalk

disposition TT_DISCARD, Specifies what to do if the sender,
TT_QUEUE,TT_START message can't be received by ToolTalk

any running process.

scope TT_SESSION, Who will be considered as sender,
TT_FILE, TT_BOTH, possible recipients based on ToolTalk
TT_FILE - IN_SESSIO their registered interest in a
N session and/ or a file.

sender_ptype char *ptype The type of the sending process. sender,
ToolTalk

session char *sessid The sending process's session. sender,
ToolTalk

1.4.1 ToolTalk Messages 47

www.manaraa.com

Message
Value Description

Who Can
Attribute Fill In

status int status,
char *status_str

Notices and Requests

Scope

48

Additional information about replier,
the state of the message. ToolTalk

However, it is unusual for one process to know another's
procid; more often a sender doesn't care which process per­
forms an operation (request message) or learns of an event
(notice message).

Applications can send two classes of ToolTalk messages, no­
tices and requests. A notice is informational, a way for an ap­
plication to announce an event. Applications that receive a
notice absorb the message without returning results to the
sender. A request is a call for an action, with the results of the
action recorded in the message, and the message returned to
the sender as a reply.

Applications using the ToolTalk service to communicate
usually have something in common - the applications are
running in the same session or they're interested in the same
file or data. Applications register this interest by joining ses­
sions or files (or both) with the ToolTalk service. This file and
session information is used by the ToolTalk service in con­
junction with the message patterns to determine which ap­
plications should receive a message.

File Scope. When a message is "scoped" to a file, only those
applications that have joined the file (and match the remain­
ing attributes) will receive the message. Applications that
share interest in a file do not have to be running in the same
session.

Session Scope. When a message is scoped to a session, only
those applications that have joined the session will be con­
sidered as potential recipients.

File In Session Scope. Applications can be very specific
about the distribution of a message by specifying file-in-ses­
sion for the message scope. Only those applications that have
joined both the file and the session indicated will be consid­
ered as potential recipients.

Chapter 1. ToolTalk® Overview

www.manaraa.com

How the ToolTalk
Service Routes
Messages

-------Sender State = Sent

Figure 1.4.1. Notice routing.

1.4.2.
ToolTalk Message
Delivery
Algorithm
Process-Oriented
Message Delivery

A notice takes a one-way trip, as shown in Figure 1.4.1. The
sender creates a message, fills in attribute values, and sends
it. The ToolTalk service matches message and pattern at­
tribute values, and gives a copy of the message to one han­
dler and to all matching observers. File-scoped messages are
automatically transferred across session boundaries to pro­
cesses that have declared interest in the file.

I

-ToolTalk Handler &
Service State = Sent Observers

A request, as shown in Figure 1.4.2, takes a round-trip
from sender to handler and back; copies of the message take
one-way side trips to observers. The ToolTalk service delivers
a request to, at most, one handler. The handler adds results
to the message and sends it back. Other processes can ob­
serve a request before it is handled, after, or both; observers
absorb a request without sending it back.

To help you further understand how the ToolTalk service de­
termines message recipients, this section walks through the
creation and delivery of both process-oriented messages and
object-oriented messages.

For many process-oriented messages, the sender knows the
ptype or the procid of the process that should handle it. For
other messages, the ToolTalk service can determine the han­
dler from the operation and arguments of the message.

1. Initialize
The sender obtains a message handle and fills in the
address, scope, and class attributes.

If the address is TT_PROCEDURE, the sender fills in the
operation and arguments.

If the sender has declared only one ptype, the ToolTalk
service will fill sender_ptype in by default. Otherwise the
sender must fill it in.

If the scope is TT _F I LE, file must be filled in or defaulted.
If the scope is TT_SESSION, session must be filled in or de

1.4.2. ToolTalk Message Delivery Algorithm 49

www.manaraa.com

Sender

State=Sent

State=Handled
or Failed

Observers

ToolTalk
Service

Observers

State = Sent

State = Sent

Handler

Figure 1.4.2. Request routing.

50

faulted. If the scope is TT_BOTH, both must be filled in or
defaulted.

To speed up dispatch, the sender may fill in the handler_p­
type if known. While this may speed operations somewhat,
it reduces flexibility by not allowing processes of one ptype
to substitute for another. Also, the disposition attribute must
be specified by the sender in this case.

2. Dispatch to Handler
The ToolTalk service compares the address, scope,
message class, operation, and argument modes and
types to all signatures in the Handle section of each
ptype.

Only one ptype will usually contain a message pattern
that matches the operation and arguments and specifies
Handle. If a handler ptype is found, then the ToolTalk service
fills in opnum, handler_ptype, and disposition from the
ptype message pattern.

If the address is TT _HANDLER, the ToolTalk service looks
for the specified procid and adds the message to the han-

Clmpter 1. ToolTalk® Overview

www.manaraa.com

Example

dler's message queue. IT_HANDLER messages cannot be
observed because no pattern matching is done.

3. Dispatch to Observers
The ToolTalk service compares the scope, class, oper­
ation, and argument types to all message patterns in
the Observe section of each ptype.

For all message patterns that match the message and spec­
ify TT_QUEUE or TT_START, the ToolTalk service attaches an
11 observe promise" record to the message that specifies the
ptype and the queue / start options. The ToolTalk service then
adds the ptype to its internal ObserverPtypeList.

4. Deliver to Handler
If a running process has a handler message pattern
registered that matches the message, the ToolTalk ser­
vice delivers the message to it. Otherwise, the ToolTalk
service honors the disposition (start or queue) options.

If more than one process has registered a dynamic pattern
that matches the handler information, the more specific pat­
tern is given preference (by counting the number of non­
wildcard matches). If two patterns are equally specific, the
choice of handler is arbitrary.

5. Deliver to Observers
The ToolTalk service delivers the message to all run­
ning processes that have Observer patterns registered
which match the message. As each delivery is made,
the ToolTalk service checks off any 11 observe promise"
for the ptype of the observer. After this process, if there
are any 11 observe promises" left unfulfilled, the
ToolTalk service honors the start and queue options in
the promises.

The set of patterns matched against for delivery depends
on the scope of the message. If the scope is TT_SESSION,
only patterns for processes in the same session are checked.
If the scope is TT_FILE, patterns for all processes observing
the file are checked. If the scope is IT_BOTH, both sets of pro­
cesses are checked.

In this example, a debugger and a editor interact via ToolTalk
messages so the debugger can use the editor to display the
source around a breakpoint.

The editor has the following Handle pattern in its ptype:

1.4.2. ToolTalk Message Delivery Algorithm 51

www.manaraa.com

Object-Oriented
Messages Delivery

52

(HandlerPtype: TextEditor;
Op: ShowLine;
Scope: TT_SESSION;
Session: my_session_id;
File: /home/gondor/joe/src/ebe.c)

When the debugger reaches a breakpoint, it sends a mes­
sage with op (ShowLine), argument (the line number), file
(the file name), session (the current session id), and scope
(TT_SESSION) .

The ToolTalk service matches this message against all reg­
istered patterns, finds the pattern registered by the editor,
and delivers the message to the editor. The editor then scrolls
to the line indicated in the argument.

Many messages handled by the ToolTalk service are directed
at objects but are actually delivered to the process that man­
ages the object. The message signatures in an otype, which
include the ptype of the process that can handle each specific
message, help the ToolTalk service determine to which pro­
cess to deliver an object-oriented message. Here are the steps
in the creation and delivery of an object-oriented message.

1. Initialize
The sender fills in the class, operation, arguments, and
the target objid attributes.

The sender attribute is automatically filled in by the
ToolTalk service. The sender can either fill in the sender_p­
type and session attributes or allow the ToolTalk service to
fill in the default values for these.

2. Resolve
The ToolTalk service looks up the objid in the ToolTalk
database and fills in the otype and file attributes.

3. Dispatch to Handler
The ToolTalk service searches through the otype defi­
nitions looking for Handler message patterns match­
ing the message's operation and arguments.

When a match is found, the ToolTalk service fills in scope,
opnum, handler_ptype, and disposition from the otype mes­
sage pattern.

4. Dispatch to Object-Oriented Observers
The ToolTalk service compares the message's class,
operation, and argument attributes against all Ob-

Chapter 1. ToolTalk@ Overview

www.manaraa.com

Otype addressing

serve message patterns of the otype. When a match is
found, if the message pattern specifies TT_QUEUE or
TT_START, the ToolTalk service attaches an "observe
promise" record to the message that specifies the
ptype and the queue and start options.

5. Dispatch to Procedural Observers
The ToolTalk service continues to match the message's
class, operation, and argument attributes against all
Observe message patterns of all ptypes as in ''''. When
a match is found, if the signature specifies TT_QUEUE

or TT_START, the ToolTalk service attaches an "ob­
serve promise" record to the message, specifying the
ptype and the queue/start options.

6. Deliver to Handler
If a running process has a Handler pattern registered
which matches the message, the ToolTalk service de­
livers the message to it. Otherwise, the ToolTalk ser­
vice honors the disposition (queue/start) options.

If more than one process has registered a dynamic pattern
that matches the handler information, the more specific pat­
tern is given preference (by counting the number of non­
wildcard matches). If two patterns are equally specific, the
choice of handler is arbitrary.

7. Deliver to Observers
The ToolTalk service delivers the message to all run­
ning processes that have Observer patterns registered
which match the message. As each delivery is made,
the ToolTalk service checks off any "observe promis­
es" for the ptype of the observer. After this process, if
there are any "observe promises" left unfulfilled, the
ToolTalk service honors the disposition (queue/start)
options in the promises.

The set of patterns matched against for delivery depends
on the scope of the message. If the scope is TT_SESSION,
only patterns for processes in the same session are checked.
If the scope is TT_FILE, patterns for all processes observing
the file are checked. If the scope is TT _BOTH, both sets of pro­
cesses are checked.

There are times when it is necessary to send an object-ori­
ented message without knowing the objid. To handle these
cases, the ToolTalk service provides otype addressing. This

1.4.2. ToolTalk Message Delivery Algorithm 53

www.manaraa.com

Example

54

addressing mode requires the sender to specify the opera­
tion, arguments, scope, and otype. The ToolTalk service looks
in the specified otype definition for a message pattern match­
ing the message's operation and arguments to locate the han­
dling and observing process. The dispatch and delivery then
proceed as in messages to specific objects.

In this example, a spreadsheet application, "FinnogaCalc", is
integrated with the ToolTalk service. When it starts, it regis­
ters with the ToolTalk service by declaring its ptype, Fin­
nogaCalc. and joining its default session. When it loads a
worksheet, hatsize. wks, FinnogaCalc also tells the
ToolTalk service it is observing the worksheet by joining the
worksheet file. A second instance of FinnogaCalc (called Fin­
nogaCalc2) starts, loads a worksheet, wardrobe. wks, and
registers with the ToolTalk service in the same way. The user
tells FinnogaCalc and FinnogaCalc2 that the value of cell B2
in hatsize. wks should appear in cell C14 of war­
drobe.wks.

In order for FinnogaCalc to be able to send values to cell
C14, FinnogaCalc2 creates an object spec for the cell by call­
ing a ToolTalk function. This object is identified by an objid.
FinnogaCalc2 then gives this objid to FinnogaCalc, perhaps
by passing it via the clipboard. FinnogaCalc then remembers
that its cell B2 gets its data from the object identified by this
objid. When FinnogaCalc changes the value of cell B2, it
sends a message to the object identified by this objid. The
message contains an operation that FinnogaCalc2 will recog­
nize as meaning "here are new contents for a cell" and an
argument containing the new data.

To deliver the message, the ToolTalk service:

1. Examines the spec associated with the objid and finds
that the type of the objid is FinnogaCalc_cell and
that the corresponding object is in the file war­
drobe.wks

2. Consults the otype definition for Finnoga-Calc_
celL From the otype, the ToolTalk service determines
that this message is observed by processes of ptype
FinnogaCalc and that the scope of the message
should be TT FILE.

3. Matches the message against registered patterns and
locates all processes of this ptype that are observing

Chapter 1. ToolTalk® Overview

www.manaraa.com

the proper file. FinnogaCalc2 matches, but Finnoga­
Calc doesn't as it is looking at the wrong file.

4. Delivers the message to FinnogaCalc2.

FinnogaCalc2 can then update the value in war­
drobe . wks and display the new value.

1.4.3
Creating and
Filling in
Messages

The ToolTalk functions used to create and fill in messages are
listed in Table 1.4.2.

he ToolTalk service provides two methods of creating mes­
sages: these process- and object-oriented notice and request
functions

• tt_pnotice_createO
• tt_prequest_createO

• tt_onotice_createO
• tt_orequest_createO

and the general-purpose function, t t_message_cre­
ate() .

Table 1.4.2. Creating and filling in messages.

Return Type ToolTalk Function

It_message tt_onotice_create(const char *objid, const char *op)

It_message tt_orequest_create(const char *objid, const char *op)

It_message tt_pnotice_create(Tt_scope scope, const char *op)

It_message tt_prequest_create(Tt_scope scope, const char *op)

It_message tt_message_create(void)

It_status tt_message_address_set(It_message m, It_address p)

It_status tt_message_arg_add(It_message m, It_mode n, const char *vtype, const char
*value)

It_status tt_message_arg_bval_set(It_message m, int n, const unsigned char *value, int
len)

It_status tt_message_arg_ival_set(It_message m, int n, int value)

It_status tt_message_arg_ vaCset(It_message m, int n, const char *value)

1.4.3 Creating and Filling in Messages 55

www.manaraa.com

Retum Type

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

56

ToolTalk Function

tt_message_barg_add(ICmessage m, Tt_mode n, const char *vtype, const
unsigned char *value, int len)

tt_message_iarg_add(Tt_message m, Tt_mode n, const char *vtype, int value)

tt_message_class_set(Tt_message m, It_class c)

tt_message_file_set(Tt_message m, const char *file)

tt_message_handler_ptype_set(Tt_message m, const char *ptid)

tt_message_handler_set(Tt_message m, const char *procid)

tt_message_object_set(Tt_message m, const char *objid)

tt_message_op_set(Tt_message m, const char *opname)

tt_message_otype_set(Tt_message m, const char *otype)

tt_message_scope_set(Tt_message m, Tt_scope s)

tt_message_sender_ptype_set(It_message m, const char *ptid)

tt_message_session_set(Tt_message m, const char *sessid)

tt_message_status_set(Tt_message m, int status)

tt_message_status_string_set(Tt_message m, const char *status_str)

tt_message_user_set(Tt_message m, int key, void *v)

The ToolTalk service provides the process- and object-ori­
ented notice and request functions to make message creation
simpler for the common cases. They are functionally identi­
cal to strings of other tt_message_create () and tt_
message_<attribute>_set () calls, but are easier to write
and read.

Note - The code samples that illustrate the calls used to per­
form the operations in this section are mostly fragments
from the sample programs, ttsamplel and Sun_Edit­
Demo. These sample programs can be found in this directo­
ry:$OPENWINHOME/share/src/tooltalkl

Chapter 1. ToolTalk® Overview

www.manaraa.com

Creating and Filling
In Procedural
Messages

Using pnotice and
prequest Functions

/*

The ToolTalk service provides two methods for creating pro­
cedural messages: tt_pnotice_create () or tt_pre­
quest_create();and,tt_message_create().

To get a "handle" or "opaque pointer" to a new message ob­
ject for a procedural notice or request, use t t_pno­
tice_create () or tt_prequest_create (). Use this
handle on succeeding calls to refer to the message.

When you use tt_pnotice_create () or tt_pre­
quest_create (), you supply the following two attributes
as arguments:

• scope
Fill in the scope of the message delivery. Potential re­
cipients could be joined to:

oTT_SESSION

oTT_FILE

oTT_BOTH

o TT_FILE_IN_SESSION

Depending on the scope, the ToolTalk service will fill
in the default session and/or file.

• op
Fill in the operation that describes the notice or re-
quest you are making. To determine the operation
name, consult the ptype definition for the target pro­
cess or other protocol definition.

You can fill in more message attributes, such as operation
arguments, with tt_message_<attribute>_set calls.

Here's sample code for creating a pnotice from ttsam­
plel..

* Create and send a ToolTalk notice message
* ttsamplel_value(in int <new value)
*/

msg_out = tt-pnotice_create(TT_SESSION, "ttsamplel_value");
tt_message_arg_add(msg_out, TT_IN, "integer", NULL);
tt_message_arg_ival_set(msg_out, 0, (int) xv_get (slider,

PANEL_VALUE)) ;
tt_message_send(msg_out) ;

1.4.3 Creating and Filling in Messages 57

www.manaraa.com

/*
* Since this message is a notice, we don't expect a reply, so
* there's no reason to keep a handle for the message.
*/

Using tCmessage_create For a procedural message created with t t_message_cre­
ate(), set these attributes using the tt_message_<at­
tribute> _set () calls:

58

• class
Use TT_REQUEST for messages that return values or
status. You will be informed when the message is han­
dled or queued, or when a process is started to handle
the request.

Use TT_NOTICE for messages that just notify other pro­
cesses of events.

• address
Use TT_PROCEDURE to send the message to any pro­
cess that can perform this operation with these argu­
ments. Fill in op and args attributes of this message.

Use TT_HANDLER to send this to a particular process.
Specify the handler attribute value.

If you know the exact procid of the handler, you can ad­
dress messages to it directly and the ToolTalk service will de­
liver the message directly - no pattern matching is done and
no other applications can observe the message. The usual
way this happens is for one process to make a general request
and then pick the handler attribute out of the reply, directing
further messages to the same handler. This allows two pro­
cesses to rendezvous through broadcast message passing
and then go into a dialogue.

• scope
Fill in the scope of the message delivery. Potential re­
cipients could be joined to:

oTT_SESSION

oTT_FILE

oTT_BOTH

o TT_FILE_IN_SESSION

Chapter 1. ToolTalk® Overview

www.manaraa.com

Creating and Filling
In Object-Oriented
Messages

Using onotice and orequest
Functions

1.4.3 Creating and Filling in Messages

Depending on the scope, the ToolTalk service will fill in
the default session and/ or file.

• op
Fill in the operation that describes the notification or
request you're making. To determine the operation
name, consult the ptype definition for the target pro­
cess or other protocol definition.

• args
Fill in any arguments specific to the operation. Use
t t_rnessage_arg_add () to add each argument in
turn. For each argument, specify:

D Tt_mode
Specify TT_IN, TT_OUT, or TT_INOUT. HTt_mode
is TT_IN or T'r_INoUT, specify the value.

D value type (vtype)

The ToolTalk service provides two methods to create object­
oriented messages: tt_onotice_create () or tt_ore­
quest_create (); and tt_rnessage_create (). The
ToolTalk service provides the onotice (object-oriented notice)
and orequest (object-oriented request) functions to make
message creation simpler for the common cases. They are
functionally identical to strings of other t t_rnessage_cre­
ate () and tt_rnessage_<attribute>_set () calls, but are
easier to write and read.

To get a "handle" or "opaque pointer" to a new message ob­
ject for a object-oriented notice or request, use t t_ono­
tice_create () or tt_orequest_create (). Use this
handle on succeeding calls to refer to the message.

When you use tt_onotice_create () or tt_ore­
quest_create (), you supply the following two attributes
as arguments:

• objid
Fill in the unique object identifier.

• op
Fill in the operation that describes the notice or re-
quest you are making. To determine the operation
name, consult the ptype definition for the target pro­
cess or other protocol definition.

You can fill in more message attributes, such as operation
arguments, with t t_rnessage_ <attribute> _set calls.

59

www.manaraa.com

/*

Here's how Sun_Edi tDemo creates and sends an ore­
quest during its notify callback function for cn tl_ u i_h i l­
ite_button.

* Notify callback function for 'cntl_ui_hilite_button'.
*/

void
cntl_ui_hilite_button_handler(item, event)

60

Panel item
Event

item;
*event;

msg;

if (cntl_objid == (char *)0) {
xv_set (cntl_ui_base_window, FRAME_LEFT_FOOTER,

"No object id selected", NULL);
return;

msg tt_orequest_create(cntl_objid, "hilite_obj");
tt_message_arg_add (msg, TT_IN, "string", cntl_obj id) ;
tt_message_callback_add(msg, cntl_msg_callback);
tt_message_send(msg) ;

For an object-oriented message created with tt_me s­
sage_create (), set these attributes using the tt_mes­
sage_ <attribute> _set () calls:

• class
Use TT_REQUEST for messages that return values or
status. You will be informed when the message is han­
dled or queued, or when a process is started to handle
the request.

Use TT_NOTICE for messages that just notify other
processes of events.

• address
Use TT_OBJECT to send the message to a specific ob­
ject that performs this operation with these argu­
ments. Fill in object, op, and args attributes of this
message.

Use TT_OTYPE to send this message to this type of ob­
ject that can perform this operation with these argu­
ments. Fill in otype, op, and args attributes of the
message.

Chapter 1. ToolTalk® Overview

www.manaraa.com

1.4.4
Adding Message
Callbacks

1.4.4 Adding Message Callbacks

• op
Fill in the operation that describes the notification or
request you're making. To determine the operation
name, consult the ptype definition for the target pro­
cess or other protocol definition.

• args
Fill in any arguments specific to the operation. Use
tt_message_arg_add to add each argument in
turn. For each argument, specify:

D Tt_mode
Specify TT_IN, TT_OUT, or TT_INOUT. If Tt_­
mode is TT_IN or TT_INOUT, specify the value.

D value type (vtype)

You can add callbacks to requests so when the reply is re­
ceived, the callback routine is automatically called to exam­
ine the results of the reply and take appropriate actions. Use
tt_message_callback_add () to add the callback rou­
tine to your request.

When the reply comes back and the message has been pro­
cessed via the callback routine, be sure to destroy the mes­
sage after the callback function returns TT_CALLBACK_
PROCESSED. Use tt_message_destroy () to destroy the
message.

Here's a code fragment to illustrate this requirement:

Tt_callback action
sample_msg_callback(Tt_message m, Tt-pattern p)
{

... process the msg ...

tt_message_destroy(m);
return TT_CALLBACK_PROCESSED;

In Sun EditDemo's cntl ui hilite_button func­
tion shown in "The ToolTalk service provides two methods
to create object-oriented messages: tConotice_createO or
tt_orequest_createO; and tt_message_createO. The ToolTalk
service provides the onotice (object-oriented notice) and ore­
quest (object-oriented request) functions to make message
creation simpler for the common cases. They are functionally
identical to strings of other tt_message_createO and tCmes­
sage_ <attribute> _setO calls, but are easier to write and read."

61

www.manaraa.com

on page 59, a callback is added to the request to highlight an
object in the edit window. This callback, cntl_ffisg_call­
back, examines the state field of the reply and takes action if
the state is started, handled, or failed.

Here's the cntl_ffisg_callback:

* Default callback for all the ToolTalk messages we send.
*/

Tt_callback_action
cntl_msg_callback(m, p)

62

Tt_message m;

TtJ)attern p;

int
char
char
mark

mark;
msg[255] ;
*errstr;

tt_mark () ;
switch (tt_message_state(m))

case TT_STARTED:
xv_set (cntl_ui_base_window, FRAME_LEFT_FOOTER,

"Starting editor ... ", NULL);
break;

case TT_HANDLED:
xv_set (cntl_ui_base_window, FRAME_LEFT_FOOTER,

break;

case TT_FAILED:
errstr = tt_message_status_string(m);

NULL) ;

if (ttJ)ointer_error(errstr) == TT_OK && errstr) {
sprintf(msg,"%s failed: %s", tt_message_op(m), errstr);

else if (tt_message_status(m) == TT_ERR_NO_MATCH)
sprintf(msg, "%s failed: Couldn't contact editor",

tt_message_op(m) ,
tt_status_message(tt_message_status(m))) ;

else {
sprintf(msg,"%s failed: %s",

tt_message_op(m) ,
tt_status_message(tt_message_status(m))) ;

xv_set (cntl_ui_base_window, FRAME_LEFT_FOOTER, msg, NULL);
break;

default:
break;

Chapter 1. ToolTalk® Overview

www.manaraa.com

1.4.5

/*

* no further action required for this message. Destroy it
* and return TT_CALLBACK_PROCESSED so no other callbacks will
* be run for the message.
*/

tt_message_destroy(m) ;
tt_release(mark) ;
return TT_CALLBACK_PROCESSED;

Send the message with tt_message_send ().

Sending a Message If the ToolTalk service returns TT_WRN_STALE_OBJID,
the ToolTalk service has found a forwarding pointer in the
ToolTalk database indicating that the object mentioned in the
message has been moved. The ToolTalk service will go ahead
and send the message with the fresh objid. Use t t_mes sa­
ge_obj ect () to retrieve the fresh objid from the message
and put the new objid into your internal data structure.

1.4.5 Sending a Message

If you will not need the message in the future (perhaps if
the message was a notice), free up the storage space by delet­
ing the message with t t_message_destroy (). If you're
expecting a reply and want to compare it against your re­
quest, do not destroy the message until you've handled the
reply.

63

www.manaraa.com

1.5
Receiving
Messages

1.5.1
Retrieving
Messages

64

This section describes how to retrieve messages delivered to
your application and how to handle the message once you've
examined it. It also shows how to send replies to requests that
you receive. As mentioned earlier, when you're through with
a message, destroy the message to free up storage.

To retrieve a message from the ToolTalk service and han-
dle it, modify your application to support these operations.

• Retrieving Messages
• Handling Messages
• Replying to Messages
• Destroying Messages

Note - The code samples that illustrate the calls used to per­
form the operations are mostly fragments from the sample
programs, t t samplel and Sun_Edi tDemo. These sample
programs are in this directory: $OPENWINHOME I share I
src/tooltalkl

When a message arrives for your process, the ToolTalk­
supplied file descriptor becomes active. When notified of the
active state of the file descriptor, call t t_message_re­
c e i ve () to get a handle for the incoming message.

Note - Handles for messages remain constant. For example,
when a process sends a message, both the message and any
replies to the message have the same handle.

Chapter 1. ToolTalk® Overview

www.manaraa.com

How The ToolTalk
Service Invokes
Callbacks

1.5.2
Handling
Messages

1.5.2 Handling Messages

To easily identify and process messages you receive, you
can:

• Add a callback to a dynamic pattern with t t-pa t­
tern_callback_add () . When you retrieve the mes­
sage, the ToolTalk service will invoke any message or
pattern callbacks. See Section 3, "Message Patterns," for
more information on placing callbacks on patterns.

• Retrieve the message's opnum if you are receiving mes­
sages that match your ptype message patterns.

You can recognize and handle replies to messages you sent
by:

• Placing specific callbacks on requests before you send
them with tt_message_callback_add () . See Sec­
tion 4, "Sending Messages," for more information on
placing callbacks on messages.

• Comparing the handle of the message you sent with the
message you just received. The handles will be the same
if the message is a reply.

• Placing information meaningful to your application in
a request with the tt_message_user_set () call.

Here's a code from t t s amp 1 e 1 for receiving a message

The following flow diagram, Figure 5.1, illustrates how the
ToolTalk service invokes message and pattern callbacks
when tt_message_recei ve () is called to retrieve anew
message.

When handling a message, you examine the message and
take appropriate action. To examine the attributes of a mes­
sage you have received, use the ToolTalk functions listed in
Table 1.5.1.

Before you start retrieving values, it's a good idea to obtain
a mark on the ToolTalkAPI stack so you can release all at once
the information the ToolTalk service returns to you. Here's
how ttsamplel allocates storage, examines a message's
contents, and releases the storage.

65

www.manaraa.com

66

/*

* Get a storage mark so we can easily free all the data
* ToolTalk returns to us.
*/

mark = tt_mark();

if (O==strcmp ("ttsamplel_value", tt_message_op (msg_in)))
tt_message_arg_ival(msg_in, 0, &val_in);
xv_set (gauge, PANEL_VALUE, val_in, NULL);

tt_message_destroy(msg_in) ;
tt_release(mark) ;
return;

no

message
callbacks?

no

pattern
callbacks?

id any callback return
TT_CALLBACK_PROCESS

yes

yes

Figure 1.5.1. How callbacks are invoked.

Table 1.5.1. Examining message attributes.

Return Type ToolTalk Function

Tt_address tt_message_address(Tt_message m)

Tt_status tt_message_arg_bval(Tt_message m, int n, unsigned char **value, int *len)

Tt_status tt_message_arg_ival(Tt_message m, int n, int *value)

Tt_mode tt_message_arg_mode(Tt_message m, int n)

Chapter 1. ToolTalk® Overview

www.manaraa.com

Return Type ToolTalk Function

char * tCmessage_arg_type(Tt_message m, int n)

char * tt_message_arg_val(Tt_message m, int n)

int tt_message_args_count(Tt_message m)

Tt_class tt_message_class(Tt_message m)

Tt_disposition tt_message_disposition(Tt_message m)

char * tt_message_file(Tt_message m)

·d t gt- tt_message...gid(Tt_message m)

char * tt_message_handler(Tt_message m)

char * tt_message_handler_ptype(Tt_message m)

char * tt_message_object(Tt_message m)

char * tt_message_op(Tt_message m)

int tt_message_opnum(Tt_message m)

char * tt_message_otype(Tt_message m)

Tt_pattern tt_message_pattern(Tt_message m)

Tt_scope tt_message_scope(Tt_message m)

char * tt_message_sender(Tt_message m)

char * tt_message_sender_ptype(TCmessage m)

char * tt_message_session(Tt_message m)

Tt_state tt_message_state(Tt_message m)

int tt_message_status(Tt_message m)

char * tt_message_status_string(Tt_message m)

uid_t tt_message_uid(Tt_message m)

void * tt_message_user(Tt_message m, int key)

1.5.2 Handling Messages 67

www.manaraa.com

Handling Requests

Replying to Requests

If you have received a request (Tt_class = TT_REQUEST), you
must do one of the following:

• Reply to the request
• Reject or fail the request

When you receive a request, you need to do the following
steps:

1. Perform the desired operation.

2. Fill in any argument values with modes of TT_OUT or
TT_INOUT.

3. Send the reply to the message.

The ToolTalk functions used to reply to messages are listed
in Table 1.5.2.

Table 1.5.2. Replying to requests.

Return Type ToolTalk Function

Tt_mode tt_message_arg_mode(Tt_message m, int n)

Tt_status tCmessage_arg_bval_set(Tt_message m, int n, const unsigned char *value, int
len)

It_status tt_message_arg_ival_set(Tt_message m, int n, int value)

Tt_status tt_message3rg_val_set(Tt_message m, int n, const char *value)

Tt_status tt_messageJeply(Tt_message m)

Rejecting or Failing a
Request

The ToolTalk functions used to reject or fail a request are
listed in Table 1.5.3.

Rejecting a Request

Failing a Request

68

If you have examined the request and your application is not
currently able to handle the request but another application
might be able to handle the request, use t t_message_re­
j ect () to reject the message. The ToolTalk service will then
attempt to find another receiver to handle the request. If the
ToolTalk service cannot find a handler that is currently run­
ning, it will examine the disposition attribute and either
queue the message or attempt to start applications with
ptypes that contain the appropriate message pattern.

If you have examined the request and the requested opera­
tion cannot be performed by you or any other process of the
same ptype as yours, use tt_message_fail () to inform

Chapter 1. ToolTalk® Overview

www.manaraa.com

the ToolTalk service that the operation could not be per­
formed. The ToolTalk service will inform the sender that the
request failed.

Table 1.5.3. Rejecting or failing requests.

Return Type ToolTalk Function

It_status u_message_reject(It_message m)

It_status U_message_fail(It_message m)

It_status U_message_status_set(It_message m, int status)

It_status U_message_status_string_set(It_message m, const char *status_str)

1.5.3
Destroying
Messages

1.5.3 Destroying Messages

To aid the sender in understanding why the request failed,
use tt_message_status_set () and/or tt_messag­
e_status_string_set () before calling t t_message_­
fail (). The status code that you specify with
tt_message_status_set () must be greater than 2047
(which = TT_ERR_LAST).

After you have processed a message (and perhaps sent a re­
ply), free up the storage space by deleting the message with
tt_message_destroy().

69

www.manaraa.com

1.6
Objects

1.6.1
Creating Object
Specs

70

This section tells you how to create ToolTalk specs for objects
your application creates and manages. Before identifying the
type of object you create, you need to define otypes and store
them in the Classing Engine. See Chapter 1.3, "Message Pat­
terns," for information on otypes.

The ToolTalk service uses spec and otype information
when determining object-oriented message recipients.

Create and manage ToolTalk specs for your application
objects by:

• Creating Object Specs
• Updating Object Specs
• Maintaining Object Specs
• Destroymy Object Specs

Note - The code samples that illustrate the calls used to per­
form the operations are mostly fragments from the sample
program, SUD_Edi tDemo. This sample program is in this
directory:
$OPENWINHOME/share/src/tooltalk/

In order for the ToolTalk service to be able to deliver mes­
sages to your objects, create a spec that identifies the object
and its otype. When you create a spec, you get a string name,
the objid, for the object.

You can put properties on the spec. One use of spec prop­
erties is to store the location of the objid in the spec proper­
ties. You can use this location to identify where the object is
in your tool's internal data structures. While the simplest so­
lution would probably be for you to store the objid in your
own internal data, the ToolTalk service recognizes that this is
not always possible. For example, for objects in plain ASCII
text files, there's no place for you to store the objid.

Chapter 1. ToolTalk@Overview

www.manaraa.com

Another use of spec properties is for the convenience of
the end user. A user may want to associate properties with
the object such as a comment or object name that they can
view later. Your application or another ToolTalk-based tool
could search for and display these properties for the user.

The ToolTalk functions used to create and write object
specs are listed in Table 1.6.1.

Table 1.6.1. Creating objects.

Return Type

char *

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

Tt_status

ToolTalk Function

tt_spec_create(const char *filepath)

tt_spec_prop_set(const char *objid, const char *propname, const char *value)

tt_spec_prop_add(const char *objid, const char *propname, const char *value)

tt_spec_bprop_add(const char *objid, const char *propname, const unsigned
char *value, int length)

tt_spec_bprop_set(const char *objid, const char *propname, const unsigned char
*value, int length)

tt_spec_type_set(const char *objid, const char *otid)

tt_spec_write(const char *objid)

To create an object spec in memory and obtain an objid for
the object, use tt_spec_create (). Use tt_spec_­
type_set () to assign an otype for the object spec. The type
must be set before the spec is written for the first time, and
cannot be changed thereafter.

To store properties in a spec, use t t_specJ)rop_
set () . You can add to the list of values associated with the
property with t t_specJ)rop_add () .

After setting the type and adding properties to a spec,
make the object spec a permanent ToolTalk item and visible
to other users with tt_spec_write (). When you call
t t_spec_wr i t e (), the ToolTalk service writes the spec
into the ToolTalk database.

1.6.1 Creating Object Specs 71

www.manaraa.com

/*

When Sun_Edi tDemo creates an object for its user, it cre­
ates the object spec, sets the otype, writes the spec to the
ToolTalk database, and wraps the user's selection with C­
style comments. Here's how Sun_Edi tDemo does this:

* Make a ToolTalk spec out of the selected text in this textpane. Once
* the spec is successfully created and written to a database, wrap the
* text with C-style comments in order to delimit the object and send out
* a notification that an object has been created in this file.
*/

Menu_item
edit_ui_make_object(item, event)

Panel_item item;
Event

72

int
char
char

*event;

mark = tt_mark();
*objid;
*file;

char
Textsw_index
char

*sel;
first, last;
obj_start_text[lOOl;
obj_end_text[lOOl;
msg;

char
Tt_message

if (! get_selection (edit_ui_xserver, edit_ui_textpane,
&sel, &first, &last)) {

xv_set (edit_ui_base_window, FRAME_LEFT_FOOTER,
uFirst select some text U, NULL);

tt_release(mark)i
return item;

if (file == (char *)0) {
xv_set (edit_ui_base_window, FRAME_LEFT_FOOTER,

UNot editing any file u, NULL);
tt_release(mark) ;

return item;

Chapter 1. ToolTalk® Overview

www.manaraa.com

/* create a new spec */

objid = tt_spec_create(tt_default_file());
if (tt-pointer_error(objid) != TT_OK) {

xv_set (edit_ui_base_window, FRAME_LEFT_FOOTER,
"Couldn't create object", NULL);

tt_release(mark) ;
return item;

/* set its otype */

tt_spec_type_set(objid, "Sun_EditDemo_object");
if (tt_spec_write(objid) != TT_OK) {

xv_set (edit_ui_base_window, FRAME_LEFT_FOOTER,
"Couldn't write out object", NULL);

tt_release(mark) ;
return item;

/* wrap spec's contents (the selected text) with C-style */
/* comments. */

sprintf(obj_start_text," /* begin_object (%s) */", objid);
sprintf(obj_end_text,"/* end_object (%s) */", objid);
(void)wrap_selection(edit_ui_xserver, edit_ui_textpane,

obj_start_text, obj_end_text);

/* now send out a notification that we've added a new object */

msg =
tt-pnotice_create(TT_FILE_IN_SESSION,"Sun_EditDemo_new_object");

tt_message_file_set(msg, file);
tt_message_send(msg) ;

tt_release(mark);
return item;

Sun_Edi tDemo also sends out a procedure-addressed
notice after it creates the new object to update other applica­
tions who observe messages with the Sun_Edi tDemo_ne­

w_obj ect operation. If other applications are displaying a
list of objects in a file managed by Sun_Edi tDemo, they up­
date their list after receiving this notice.

1.6.1 Creating Object Specs 73

www.manaraa.com

1.6.2
Updating Object
Specs

To update spec properties, use t t_specJ)rop_set () and
t t_specJ)rop_add () , specifying the objid of the exist­
ing object spec. After you have updated the spec properties,
call tt_spec_write () to write the changes into the
ToolTalk database.

When you are updating an existing spec and the ToolTalk
service returns TT_WRN_STALE_OBJID when you call
tt_spec_wri te () , it has found a forwarding pointer to
the object in the ToolTalk database indicating that the object
has been moved. To obtain the fresh objid, create an object
message with the old objid and send it. The ToolTalk service
will return the same status code, TT_WRN_STALE_OBJID,

but will update the message objid attribute with the fresh
objid. Use t t_message_obj ect () to retrieve the fresh ob­
jid from the message and put the new objid into your internal
data structure.

1.6.3
Maintaining
Object Specs

The ToolTalk service provides the functions listed in Table
1.6.2 to examine, query, compare, and move object specs. The
ToolTalk service also provides ToolTalk-aware shell com­
mands for copying, moving, and removing files that contain
object data.

Examining Spec
Information

You can examine the following spec information with the
specified ToolTalk functions:

Table 1.6.2. Maintaining objects.

Return Type ToolTalk Function

char * tt_spec_file(const char *objid)

char * tt_spec_type(const char *objid)

char * tt_spec_prop(const char *objid, const char *propname, int i)

int tt_spec_prop_count(const char *objid, const char *propname)

It_status tt_spec_bprop(const char *objid, const char *propname, int i, unsigned char
**value, int *length)

char * tt_spec_propname(const char *objid, int n)

int tt_spec_propnames_count(const char *objid)

char * tt_objid_objkey(const char *objid)

74 Chapter 1. ToolTalk® Overview

www.manaraa.com

Return Type ToolTalk Function

Tt_status tt_file_objects_query(const char *filepath, Tt_filter_function filter, void *context,

int

char *

void *accumulator)

tt_objid_equal(const char *objidl, const char *objid2)

tt_spec_move(const char *objid, const char *newfilepath)

• Pathname of the file containing the object
tt_spec_fileO

• Otype of this object
tt_spec_typeO

• Properties stored on the spec
tt_spec_propO
tt_spec_bpropO

Queryingfor Specs In
A File

To query for existing specs in a file and use a filter mechanism
to obtain the specs you are interested in, first create your filter
function. Use tt_file_objects_query () to find all the
objects in the named file.

/*

As the ToolTalk service finds each object, it calls your filter
function, passing the objid of the object and the two applica­
tion-supplied pointers. Your filter function does some com­
putation, and returns a Tt_filter_actioD value
(TT_FILTER_CONTINUE or TT_FILTER_STOP) to either
continue the query or stop and return immediately.

Here are the steps SUD_Edi tDemo goes through when
obtaining a list of specs::

* Called to update the scrolling list of objects for a file. Uses
* tt_file_objects_query to find all the ToolTalk objects.
*/

int
cntl_update_obj_panel()
{

static int list item 0;
char *file;
int i;

cntl_objid = (char *)0;

for (i = list_item; i >= 0; i--) {
xv_set (cntl_ui_olist, PANEL_LIST_DELETE, i, NULL);

1.6.3 Maintaining Object Specs 75

www.manaraa.com

/*

list_i tern = 0;
file = (char *)xv_get(cntl_ui_file_field, PANEL_VALUE);
if (tt_file_objects_query(file,

if (tt_file_objects_query(file,
(Tt_filter_function)cntl_gather_specs,
&list_itern, NULL) 1= TT_OK) {

xv_set (cntl_ui_base_window, FRAME_LEFT_FOOTER,
"Couldn't query objects for file", NULL);

return 0;

return 1;

Within the tt_file_objects_query () function, it
calls cntl_gather_specs, a filter function that inserts ob­
jects into a scrolling list.

Here's the filter function used during the query:

* Function to insert the objid given into the scrolling lists of objects
* for a file. Used inside tt_file_objects_query as it iterates through
* all the ToolTalk objects in a file.
*/

Tt_filter_action
cntl_gather_specs(objid, list_count, acc)

char *objid;
void *list_count;
void *acc;

int *i = (int *)list_count;

xv_set (cntl_ui_olist, PANEL_LIST_INSERT, *i,
PANEL_LIST_STRING, *i, objid,
NULL) ;

*i (*i + 1);

/* continue processing */
return TT_FILTER_CONTINUE;

Comparing Object
Specs

Use t t_obj id_equal () to see if two objids are the same.
tt_obj id_equal () is better than strcmp for this pur­
pose since it returns "1" even in the case where one objid is
a forwarding pointer for the other.

76 Chapter 1. ToolTalk® Overview

www.manaraa.com

Moving Object Specs

Copying, Moving, or
Removing Files with
Object Data

The objid contains a pointer to a particular file system where
the spec information is stored. To keep spec information as
available as the object described by the spec, the ToolTalk
service stores the spec information on the same file system
as the object. This means that if the object moves, the spec
must move too.

Use t t_spec_move () to notify the ToolTalk service
when an object moves from one file to another (say, through
cut and paste). If a new objid is not required (because the new
and old files are in the same file system), the ToolTalk service
returns TT_WRN_SAME_OBJID. If the object moved to an­
other file system, the ToolTalk service returns a new objid for
the object and leaves a forwarding pointer in the ToolTalk
database from the old objid to the new one. Update any in­
ternal data structures with the new objid.

When your process sends a message to an "out of date"
objid (one with a forwarding pointer), tt_message_­
send () will return a special status code, TT_WRN_STALE_ -

OBJID, and replace the object attribute in the message with
a new objid that points to the same object in the new location.
Update any internal data structures that refer to the object
with the new objid.

When you copy, move, or destroy a file with object data in it,
use the ToolTalk functions listed in Table 1.6.3. These func­
tions ensure that the ToolTalk database servicing the disk
partition where the file is stored is kept up-to-date.

Table 1.6.3. Copying, moving, or removing files with object data.

Return Type

It_status

It_status

It_status

ToolTalk Function

tt_file_ffiove(const char *oldfilepath, const char *newfilepath)

tt_file_copy(const char *oldfilepath, const char *newfilepath)

tt_file_destroy(const char *filepath)

Caution - Despite the efforts of the ToolTalk service and
integrated applications, it's still possible for object
references to be broken by removing, moving, or
renaming files with UNIX commands like mv or rm.
Broken references like this will show up as undeliverable
messages.

1.6.3 Maintaining Object Specs 77

www.manaraa.com

Destroying Object
Specs

78

Encourage users of your application to use the following
ToolTalk-aware shell commands for copying, moving, and
removing files with object data.

• ttcp
• ttmv
• ttrm
• ttrmdir
• tttar

The man pages for these commands are located in this direc­
tory:

$OPENWINHOME/man/manl/

Use tt_spec_destroy () to destroy an object's spec in­
stantly.

Chapter 1. ToolTalk® Overview

www.manaraa.com

1.7
ToolTalk API

1.7.1
ToolTalk
Enumerated Types

Tt status

Tt_mode

1.7 ToolTalk API

The ToolTalk enumerated types fall into nine categories:

• tt status
• tt_rnode
• tt_scope
• tt class
• tt_category
• tt_address
• tt_disposition
• tt state
• tt_filter
• t t_callback

A Tt_status code is returned by all functions, sometimes
directly and sometimes encoded in a "error return value."
See Section 2, "General Application Requirements," for in­
structions on determining whether the Tt_s ta t us code is a
warning or an error and for retrieving the catalog string for
a Tt_status code.

The Tt_status codes are listed in Appendix C,
"ToolTalk Error Messages." This appendix lists the following
for each status code:

• message id

• catalog string (from Sun_Tool Talk. rno in $OPENWIN­
HOME/locale/C/LC_MESSAGES)

• meaning
• remedy

Tt_rnode values specify who (sender, handler, observers)
writes a message argument. Possible values are:

79

www.manaraa.com

Tt class

80

TT IN
The argument is written by the sender and read by the han­
dler and any observers.

TT_OUT
The argument is written by the handler and read by the
sender and any reply observers.

TT_INOUT
The argument is written by the sender and the handler and
read by all.

Tt_scope values for the Scope attribute of a message or pat­
tern indicate the set of processes eligible to receive the mes­
sage. Possible values and meanings are:

TT_SESSION
All processes joined to the indicated session are eligible.

TT_FILE
All processes joined to the indicated file are eligible.

TT_BOTH
All processes joined to either the indicated file or the indicat­
ed session are eligible.

TT FILE_IN_SESSION
All processes joined to both the indicated session and the
indicated file are eligible.

These values for the class attribute of a message or pattern
indicate whether or not the sender wants an action to take
place after the message has been received. Possible values
and meanings are:

TT_NOTICE
Notice of an event. Sender does not want feedback on this
message.

TT_REQUEST
Request for some action to be taken. Sender must be notified
of progress, success or failure, and must receive any return
values.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Tt _category

Tt address

Tt _disposition

1.7.1 ToolTalk Enumerated Types

Tt_category values for the category attribute of a pattern
indicate the receiver's intent. Possible values and meanings
are:

TT_OBSERVE

Just looking at the message. No feedback will be given to
the sender.

TT_HANDLE
Will process the message, including filling in return values
if any.

Tt_address indicates which message attributes form the
address where the message will be delivered. Possible values
and meanings are:

TT_HANDLER

Addressed to a specific handler that can perform this oper­
ation with these arguments. Fill in handler, op, and arg at­
tributes of the message or pattern.

TT_OBJECT

Addressed to a specific object that performs this operation
with these arguments. Fill in object, op, and arg attributes
of the message or pattern.

TT_OTYPE

Addressed to the type of object that can perform this oper­
ation with these arguments. Fill in otype, op, and arg at­
tributes of the message or pattern.

TT_PROCEDURE
Addressed to any process that can perform this operation
with these arguments. Fill in the op and arg attributes of the
message or pattern.

Tt_disposition values indicate whether the receiver
should be started to receive the message or if the message
should be queued until the receiving process is started at a
later time. The message can also be thrown away if the re­
ceiver is not started.

Note that Tt_disposition values can be added to­
gether, so that TT_QUEUE+TT_START means both to queue
the message and to try to start a process. This can be useful
if the start can fail (or be vetoed by the user), to ensure the
message is processed as soon as an eligible process does start.

Possible values and their meanings are:

81

www.manaraa.com

Tt state

TtJilter

82

TT_DISCARD = 0
No receiver for this message. Message is returned to sender
with the Tt_status field containing TT_FAILED.

TT_QUEUE = 1
Queue the message until a process of the proper ptype re­
ceives the message.

TT_START = 2
Attempt to start a process of the proper ptype if none is
running.

Tt_state values indicate a message's delivery status. Pos­
sible values and their meanings are:

TT_CREATED
Message has been created but not yet sent.
Only the sender of a message will see a message in this state.

TT_SENT
Message has been sent but not yet handled.

TT_HANDLED
Message has been handled, return values are valid.

TT_FAILED
Message could not be delivered to a handler.

TT_QUEUED
Message has been queued for later delivery.

TT_STARTED
Attempting to start a process to handle the message.

TT_REJECTED
Message has been rejected by a possible handler. This state
is seen only by the rejecting process. The ToolTalk service
changes the state back to TT_SENT before delivering the
message to another possible handler. If all possible handlers
have rejected the message, the ToolTalk service changes the
state to TT_FAILED before returning the message to the
sender.

Tt_filter_action is the return value from a query call­
back filter procedure. Possible values and meanings are:

TT_FILTER_CONTINUE
Continue the query, feed more values to the callback.

TT_FILTER_STOP
Stop the query, don't look for any more values.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Tt callback

1.7.2
ToolTalk
Functions

Returned Value

ReLated Functions
tt_default file

Returned Value

1.7.2 ToolTalk Functions

These values are used to specify the action taken by the call­
back attached to messages or patterns. If no callback returns
TT_CALLBACK_PROCESSED, tt_message_receive()
will return the message. Possible values and their meanings
are:

TT_CALLBACK_CONTINUE
If the callback returns TT_CALLBACK_CONTINUE, other
callbacks will be run.

TT_CALLBACK_PROCESSED
If the callback returns TT_CALLBACK_PROCESSED, no fur­
ther callbacks will be invoked for this event, and the message
will not be returned by tt_message_receive ().

tt_close(void)

Closes the current default process identifier (procid).

Note - t t_close () should be the last ToolTalk function
your process calls.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_NOMP

o TT_ERR_PROCID

char

Returns the current default file. Joining a file makes it the
default file.

char *
Pointer to a character string specifying the current default
file. If the pointer is NULL, no default is set.

83

www.manaraa.com

Related Functions
tt_default_file_set

Arguments

Returned VaLue

tt_default-procid

Returned Value

84

Use tt_ptr_error (), which returns Tt_status, to
determine if the pointer is valid. Possible Tt_s tat us values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_PROCID

tt_file_join()

Tt status tt_default_file_set(const
char *docid)

Sets the default file to the specified file.

const char *docid
Pointer to a character string specifying the file you want as
the default file.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_PROCID

o TT_ERR_FILE

char *tt_default-procid(void)

Retrieves the current default process identifier (procid) for
your process. The procid is used in the sender field of mes­
sages.

char *
Pointer to character string that uniquely identifies the cur­
rent default process.

Use t t-ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_PROCID

Chapter 1. ToolTalk® Overview

www.manaraa.com

tt_de£ault-procid_
set

Arguments

Returned Value

Related Functions
tt_de£ault-ptype

Returned Value

Related Functions
tt_de£ault-ptype_
set

1.7.2 ToolTalk Functions

tt_default-procid_set(const
char*procid)

Sets the current default procid. The default procid is set by
t t_open () . Only processes that do multiple t t_open ()
calls and juggle multiple procids ever need to use this func­
tion.

const char *procid
Name of process you want to set up as the default process.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_NOMP

o TT_ERR_PROCID

tt_open()

char *tt_default-ptype(void)

Retrieves the current default process type (ptype). Declaring
a ptype makes it the default ptype. The default ptype is used
in the sender ptype field of your message.

char *
Pointer to character string that uniquely identifies the cur­
rent default process type. If the pointer is NULL, no default
is set.

Usett-ptr_error (), whichretumsTt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT_ERR_NOMP

o TT_ERR_PROCID

tt_ptype_declare()

Tt status tt_default-ptype_set(const
char *ptid)

Sets the default process type (ptype) to the provided string.

85

www.manaraa.com

Arguments

Returned Value

tt default_session

Returned Value

Related Functions
tt_default session_
set

86

const char *ptid
Use the character string that uniquely identifies the process
you wish to set up as the default process.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_PROCID

char *tt_default_session(void)

Retrieves the current default session identifier from the
ToolTalk service for the current default procid.

char *
Pointer to the unique identifier for the current session. If the
pointer is NULL, no default is set.

Usett-ptr_error (), whichretumsTt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_PROCID

tt_default-procid()

Tt status tt default_session_set
(const char *sessid)

Sets the current default session identifier for the current de­
fault procid.

Note - The ToolTalk service uses the initial user session as
the default session and supports one session per procid. To
join other sessions, your program must first set the new ses­
sion as the default and then initialize and register. The calls
required must be in this order: tt_default_session_
set,tt_open,tt_fd

Chapter 1. ToolTalk@Overview

www.manaraa.com

Arguments

Returned Value

ReLated Functions

Arguments

Returned Value

tt_error-pointer

Arguments

Returned VaLue

tt fd

1.7.2 ToolTalk Functions

const char *sessid
Pointer to the unique identifier for the session in which you
are interested.

Tt_status
The status of the operation. Possible values are:

o TT OK

o TT ERR_NOMP

o TT_ERR_PROCID

o TT ERR_SESSION

tt_open ()

tt_fd ()

int

Given a Tt_status code, returns an integer error object en­
coding the code.

Note - The integer error objects are negative integers, so
only use this when the valid integer values are non-nega­
tive.

Tt_status ttrc
Tt_status code you want to encode.

int
Encoded Tt status code.

void *tt_error-pointer(Tt_status
ttrc)

Given a Tt_s tat us code, returns a pointer to an error object
encoding the code.

Tt_status ttrc
Tt_status code you want to encode.

void *
Pointer to encoded Tt status code.

int

Returns a file descriptor (fd) which is used to alert your pro-

87

www.manaraa.com

Returned Value

Related Functions

Arguments

Returned Value

88

gram that a message has arrived for the default procid in the
default session. File descriptors are either active or inactive.
When your file descriptor becomes active, you need to call
t t_message_recei ve.

Note - You must have a separate file descriptor for each pro­
cid. Each time you call t t_open, use t t_fd to get an asso­
ciated file descriptor.

int
File descriptor for your current procid.

Use tt_int_error (), whichretums Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_PROCID

o TT_ERR_SESSION

tt_open ()

Tt status tt_file_copy(const char
*oldfilepath, const char
*newfilepath)

Copies all the objects on the specified file to the new file. Any
objects already on the second file are not removed.

const char *oldfilepath
Pointer to the name of the file whose objects are to be cop­
ied.

const char *newfilepath
Pointer to the name of the file on which to create the copied
objects.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_DBAVAIL

Chapter 1. ToolTalk® Overview

www.manaraa.com

Related Functions

Arguments

Returned Value

Related Functions

1.7.2 ToolTalk Functions

o TT_ERR_DBEXIST

o TT_ERR_FILE

o TT_ERR_NOMP

o TT_ERR_PATH

o TT_ERR_POINTER

tt_f ile_move ()

tt_file_destroy()

tt_file_destroy(const char
*filepath)

Removes all the objects on the files and directories rooted at
filepath from the appropriate ToolTalk database. Call this
function when you unlink(2) a file or rmdir(2) a directory.

constchar*filepath
Pointer to the pathname of the file to be removed.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_ACCESS

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_PATH

o TT_ERR_POINTER

tt_file_copy ()

tt_file_move ()

rmdir(2)

unlink(2)

Tt status tt_file_join(const char
*filepath)

Informs the ToolTalk service that your process is interested

89

www.manaraa.com

Arguments

Returned Value

Arguments

Returned Value

90

in messages involving the file named by the provided string.
The ToolTalk service adds this file value to any currently reg­
istered patterns with scope TT_FILE. The named file be­
comes the default file.

canst char *filepath
Pointer to the pathname of the file to be joined.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_PATH

tt_file_mave(canst char
*aldfilepath,
canst char *newfilepath)

Destroys all the objects on the files and directories rooted at
the new filepath, and then moves all the objects on the first
file to the second file.

If oldfilepath and newfilepath are in the same filesystem,
then tt_file_mave () replaces oldfilepath with newfile­
path in the path associated with every object in that filesys­
tern. That is, it picks up all the objects in the directory tree
rooted at oldfilepath, and overlays them onto newfilepath. In
this mode, tt_file_mave () is like the system call re­
name (2).

If oldfilepath and newfilepath are on different file systems,
neither may be a directory.

canst char *aldfilepath
The name of the file or directory whose objects are to be
moved.

canst char *newfilepath
The name of the file or directory to which the objects are to
be moved.

Tt_status
The status of the operation. Possible values are:

oTT_OK

Chapter 1. ToolTalk® Overview

www.manaraa.com

Related Functions

tt_file_objects_
query

Arguments

1.7.2 ToolTalk Functions

o TT_ERR_ACCESS

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_FILE

o TT_ERR_NOMP

o TT_ERR_PATH

o TT_ERR_POINTER

tt_file_copy ()

tt_file_destroy()

rename (2)

Tt status tt_file_objects_query(const
char *filepath, Tt_filter_
function filter, void *con­
text, void *accumulator)

Instructs the ToolTalk service to find all the objects in the
named file and pass back the objids to the filter function you
created. The context pointer and accumulator pointer you
initially specify will also be passed to your filter function.

As the ToolTalk service finds each object, it calls your filter
function, passing the objid of the object and the two applica­
tion-supplied pointers. Your filter function performs its com­
putation, and returns a Tt_filter_action value to tell
the query function whether to continue or to stop. Tt_f i I­
ter action values are:

• TT FILTER_CONTINUE
• TT FILTER_STOP

const char *filepath
File name.

Tt_filter_function filter
Your filter function. Tt_filter_function is a typedef
"Tt filter_action (*) (char *objid, void
*context, void *accumulator) ".

void *context
A pointer to any information your filter needs to execute. The
ToolTalk service does not interpret this argument. It passes it
straight through to your filter function.

91

www.manaraa.com

Returned Value

Arguments

Returned VaLue

92

void *accumulator
A pointer to a place for your filter to store the results of the
query and filter operations. The ToolTalk service does not in­
terpret this argument, but passes it straight through to your
filter function.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_PATH

o TT_WRN_STOPPED

tt_file_quit(const char
*filepath)

Informs the ToolTalk service that your process is no longer
interested in messages involving the file named by the pro­
vided string. The ToolTalk service removes this file value
from any currently registered patterns with scope TT_FILE.
The default file is nulled.

const char *filepath
Filename.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_PATH

void

Frees this storage from the ToolTalk API allocation stack.
You may find t t_f ree more convenient than using t t_

mark and tt_release if your application is in a loop ob­
taining strings from the ToolTalk service and processing each
in tum.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Related Functions

Returned Value

Arguments

Returned Value

Arguments

Returned Value

1.7.2 ToolTalk Functions

caddr_t p

Storage in the ToolTalk API allocation stack that had been
given to your application.

tt_rnalloc ()

char *tt_initial_session(void)

Returns the session in which the process was created. This is
either a process tree session or the X session associated with
the display named in the DISPLAY environment variable.

char *
Identifier for the current ToolTalk session.

Use t tJ)tr_error () ,which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

Given an integer, returns TT_OK if the integer is not an error
object or the encoded Tt_status value if the integer is an
error object.

int return_val
Integer returned by a ToolTalk function.

Tt_status
The status of the operation. Possible values are:

oTT_OK

int

A macro that tells you if the Tt_s ta t us enum you provided
is a warning or an error. tt_is_err () expands to (TT_
WRN_LAST < (p)).

Tt_status s
The Tt_status code you want to check.

int
If you receive 1, the Tt_status enum is an error. If you
receive 0, the Tt_status enum is either a warning or TT_
OK.

93

www.manaraa.com

Arguments

Returned Value

Related Functions

Returned Value

Related Functions

Arguments

Returned VaLue

94

Allocates storage on the ToolTalk API allocation stack.
This capability is provided so that your application-pro­

vided callback routines can take advantage of the allocation
stack. For example, a query filter function might allocate stor­
age to hold a result.

size_t s
The amount of storage you want in bytes.

caddr_t
Storage in the ToolTalk API allocation stack given to your ap­
plication. If NULL is returned, no storage is available.

tt_free ()

int

Marks a storage position in the ToolTalk API allocation stack.
Your application typically does this at the beginning of a pro­
cedure.

int
Integer that marks your application's storage position in the
ToolTalk API allocation stack.

tt_release ()

Tt_address tt_message_address(Tt_mes­
sage m)

Retrieves the address attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_address
Specifies which message attributes form the address of this
message. Possible values are:

oTT_PROCEDURE

oTT_OBJECT

oTT_HANDLER

o TT_OTYPE

Chapter 1. ToolTalk® Overview

www.manaraa.com

tt_message_address_
set

Arguments

Returned VaLue

1.7.2 ToolTalk Functions

Use tt_int_errar (), which returns Tt_status, to
determine if the Tt_address integer is valid. Possible Tt_
status values are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt_message_address_set(Tt_
message m, Tt_address a)

Sets the address attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_address a
Specifies which message attributes form the address to which
the message will be delivered. Possible values are:

oTT_PROCEDURE

oTT_OBJECT

oTT_HANDLER

o TT_OTYPE

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt_message_arg_add(Tt_mes­
sage m, Tt_made n, canst
char *vtype, canst char
*value)

Adds a new argument to a message object. Add all argu­
ments before the message is sent.

Note - Do not add arguments to a reply. Only change exist­
ing argument values with modes of TT_OUT or TT_INOUT.

95

www.manaraa.com

Arguments

Returned Value

Related Functions

Arguments

96

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_made n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

oTT_IN

oTT_OUT

o TT_INOUT

canst char *vtype
Type of the value.

canst char *value
Contents for the message argument attribute. Use NULL for
values of mode TT_OUT, or if the value will be filled in later
with tt_message_arg_val_set, tt_message_barg_
val_set,ortt_message_iarg_val_set.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_MODE

o TT_ERR_NOMP

o TT_ERR_POINTER

tt_message_barg_add()

tt_message_iarg_add()

Tt status tt_message_arg_bval(Tt_mes­
sage m, int n, unsigned char
**value, int *len)

Retrieves the value of the n-th message argument as a byte
string.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Returned Value

tt_message_arg_
bval_set

Arguments

1.7.2 ToolTalk Functions

int n
Number of the argument you want to retrieve. The first ar­
gumentisO.

unsigned char **value
Address of a character pointer that the ToolTalk service
should aim toward a string containing the contents of the ar­
gument.

int *len
Address of an integer that the ToolTalk service should set to
the length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_POINTER

unsigned char **value
Address of a character pointer that the ToolTalk service
aimed at a string containing the contents of the argument.

int *len
Address of an integer that the ToolTalk service set to the
length of the value in bytes.

tt_message_arg_bval_set(Tt_
message m, int n, canst un­
signed char *value, int len)

Sets the value and the type of the n-th message argument as
a byte string. You (the sender) can use t t_message_arg_
bval_set to fill in opaque data.

Also, this changes the value of the n-th message argument
to a byte string. Used by the handler before replying to the
message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int n
Number of the argument you want to set. The first argument
is O.

97

www.manaraa.com

Returned Value

Related Functions

Arguments

Returned VaLue

98

canst unsigned char *value
Byte string with the contents for the message argument.

int len
Length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_POINTER

tt_message_barg_add()

tt_message_arg_val_set()

tt_message_iarg_val_set()

Tt status tt_message_arg_ival(Tt_mes­
sage m, int n, int *value)

Retrieves the value of the n-th message argument as an inte­
ger.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int n
Number of the argument you want to retrieve. The first ar­
gumentis O.

int *value
Pointer to an integer where the ToolTalk service should store
the contents of the argument.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

www.manaraa.com

tt_message_arg_
ivaI set

Arguments

Returned Value

Related Functions

Arguments

1.7.2 ToolTalk Functions

int value
Value of the n-th argument.

Tt status tt_message_arg_ival_set(Tt_
message m, int n, int value)

Fills in the n-th message argument with an integer value.
Also, changes the value of the n-th message argument to

an integer.

Tt_message m

Opaque handle for the message involved in this opera­
tion.

int n
Number of the argument you want to set. The first argu­
ment is O.

int value
Contents (in integer form) for the message argument.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_POINTER

tt_message_arg_ival_add()

tt_message_arg_mode(Tt_mes­
sage m, int n)

Returns the mode of the n-th message argument.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int n
Number of the argument in which you are interested. The
first argument is O.

99

www.manaraa.com

Returned Value

Arguments

Returned VaLue

100

Tt_mode
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

oTT_IN

o TT OUT

o TT INOUT

Use tt_int_error (), which returns Tt_status, to de­
termineifthe Tt_mode integeris valid. Possible Tt_status
values are:

o TT OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_POINTER

char *tt_message_arg_type(Tt_mes­
sage m, int n)

Retrieves the type of the n-th message argument.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int n
Number of the argument in which you are interested. The
first argument is O.

char *
Type of the n-th message argument.

Use ttJ)tr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_POINTER

char *tt_message_arg_val(Tt_mes­
sage m, int n)

Returns a pointer to the value (assuming it is a character
string) of the n-th message argument.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

tt~essage_arg_val_

set

Arguments

Returned Value

1.7.2 ToolTalk Functions

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int n
Number of the argument in which you are interested. The
first argument is O.

char *
Contents for the message argument.

Use t tJ)tr_errar (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_POINTER

Tt status tt_message_arg_val_set(Tt_
message m, int n,
canst char *value)

Changes the value of the n-th message argument. Generally
used by the handler before replying to the message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int n
Number of the argument you want to change. The first argu­
mentis O.

canst char *value
Contents for the message argument.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_POINTER

101

www.manaraa.com

tt_message_args_
count

Arguments

Returned VaLue

Arguments

102

int tt_message_args_count(Tt_
message m)

Returns the number of arguments in the message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int
Total number of arguments in the message.

Use tt_int_error (), which returns Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt_message_barg_add(Tt_mes­
sage m, Tt_mode n, constchar
*vtype, const unsigned char
*value, int len)

Adds an argument to a pattern that may have a value con­
taining imbedded nulls.

Note - Do not add arguments to a reply. Only change exist­
ing argument values with modes of TT_OUT or TT_INOUT.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_mode n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

oTT_IN

oTT_OUT

o TT_INOUT

const char *vtype
Type of the value.

Clulpter 1. ToolTalk® Overview

www.manaraa.com

Returned Value

Related Functions

The ToolTalk service treats the value as an opaque byte
string. To pass structured data, your application and the re­
ceiving application must encode and decode these opaque
byte strings. The most common way of doing this is to use
XDR.

const unsigned char *value
Value that the ToolTalk service should fill in.

int len
Length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt_message_barg_val_set()

tt_message_arg_add()

tt_message_iarg_add()

tt_message_callback_ Tt status
add

tt_message_callback_add(Tt_
message m, Tt_message_call­
back f)

1.7.2 ToolTalk Functions

Registers a callback function that will be automatically in­
voked by tt_message_receive whenever a reply or
other state-change to this message is returned.

Tt_callback_action is an enum containing the val­
ues TT_CALLBACK_CONTINUE andTT_CALLBACK_PRO­
CESSED. If the callback returns TT_CALLBACK
PROCESSED, no further callbacks will be invoked for this
event, and the message will not be returned by tt_mes­
sage_recei ve. If the callback returns TT_CALLBACK_
CONTINUE, other callbacks will be run, and if no callback re­
turns TT_CALLBACK_PROCESSED, tt_message_re­
cei ve will return the message.

This behavior can be used to create wrappers for ToolTalk
messages. A library routine can construct a request, attach a
callback to the message, send the message, and process the
reply in the callback. By having the callback return TT_
CALLBACK_PROCESSED, the message reply will not be re­
turned to the main program, so the message and reply are

103

www.manaraa.com

Arguments

Returned Value

Arguments

Returned VaLue

104

completely hidden. Note that these callbacks are invoked
from t t_message_recei ve, so it's still necessary for pro­
grams to arrange for tt_message_recei ve to be called
when the file descriptor returned by t t_fd becomes active.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_message_callback f
Tt_message_callback is a type definition for a pointer to
a function declared like: Tt_callback_action
func (Tt_message m, TtJ)attern p). The callback
is passed the message in question and the pattern that
matched it. The pattern handle will be null if the message
didn't match a dynamic pattern (this is usually the case
for message callbacks).

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt_message_class(Tt_message
m)

Retrieves the class attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_class
Indicates whether or not the sender wanted an action to
take place after the message is received. Possible values
are:

OTT_NOTICE

oTT_REQUEST
Use tt_int_error (), which returns Tt_status,
to determine if the Tt_class integer is valid. Possible
Tt status values are:

Chapter 1. ToolTalk@ Overview

www.manaraa.com

Arguments

Returned Value

Returned Value

1.7.2 ToolTalk Functions

o TT_ERR_NOMP

o TT_ERR_POINTER

tt_message_class_set(Tt_mes­
sage m, Tt_class c)

Sets the class attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_class c
Indicates whether or not you want an action to take place
after the message is received. Possible values are:

oTT_NOTICE

oTT_REQUEST

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Creates a new message object. The ToolTalk service returns a
message handle that's really an opaque pointer to a ToolTalk
structure. You do not manipulate the structure directly.

Tt_message
The unique opaque handle that identifies your message ob­
ject.

If ToolTalk is unable to create a message when requested,
an invalid handle will be returned to you. When you attempt
to use this handle, the ToolTalk service will report an error.
Use tt-pointer_error to determine why the ToolTalk
service was not able to create the message.

Use t t_ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

105

www.manaraa.com

Related Functions

tt_message_create_
super

Arguments

Returned VaLue

ReLated Functions

106

o TT_ERR_NUM

o TT_ERR_POINTER

tt_message_send()

tt_message_destroy()

tt_message_create_super(Tt_
message m)

Re-addresses the specified message to the parent otype of the
otype or object listed in the message. Returns the re-ad­
dressed message so you can fill in additional message at­
tributes and send the message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_message
Opaque unique handle for the re-addressed message.

Use tt-ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

o TT ERR_ADDRESS

o TT ERR_NOMP

o TT_ERR_OBJID

o TT_ERR_OTYPE

o TT_ERR_POINTER

tt_message_send()

tt_message_destroy()

Tt status tt_message_destroy(Tt_mes­
sage m)

Destroys the message. Destroying a message has no effect on
the delivery of a message you have already sent.

If you sent a request and are expecting a reply with return
values, destroy a message after you have received the reply.
If you sent a notice, you can destroy the message after you
send it.

Chapter 1. ToolTalk@Overview

www.manaraa.com

Arguments

Returned Value

Related Functions

tt_message_disposi­
tion

Arguments

Returned Value

1.7.2 ToolTalk Functions

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_NOMP

o TT_ERR_POINTER

tt_message_create()

tt_message_create_super()

Tt_disposition tt_message_disposition(Tt_
message m)

Retrieves the disposition attribute from the specified mes­
sage.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_disposition
Indicates whether the receiver should be started to receive
the message or if the message should be queued until the
receiving process is started at a later time. Possible values
are:

OTT_QUEUE

oTT_START

o TT_QUEUE+TT_START

Usett_int_error (), whichretumsTt_status,tode­
termine if the Tt_disposition integer is valid. Possible Tt_
status values are:

OTT_OK

o TT_ERR_NOMP

o TT_ERR_POINTER

107

www.manaraa.com

tt_message_disposi­
tion_set

Arguments

Returned VaLue

108

Tt status tt_message_disposition_set
(Tt_message m, Tt_disposi­
tion r)

Sets the disposition attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_disposition r
Indicates whether the receiver should be started to receive
the message or if the message should be queued until the
receiving process is started at a later time. Possible values
are:

OTT_QUEUE

oTT_START

o TT_QUEUE+TT_START

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt_message_fail(Tt_message
m)

Informs the ToolTalk service that your process can not handle
the request you just received and that the message should not
be offered to other processes of the same ptype as yours. The
ToolTalk service will send the message back to the sender
with state TT_FAILED.

To help the requestor distinguish this case from the case
where a message failed because no matching handler could
be found, place an explanatory message code in the status
attribute of the message with tt_message_status_set
and tt_message_status_string_set before calling
t t_message_fail.

Note - The status value must be greater than 2047 (TT_
ERR_LAST) to avoid confusion with the ToolTalk service
status values.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

Related Functions

Arguments

Returned VaLue

Arguments

1.7.2 ToolTalk Functions

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT _ERR_NOMP

o TT_ERR_NOTHANDLER

o TT_ERR_POINTER

tt_message_status_set()

tt_message_status_string_set()

char *tt_message_file(Tt_message
m)

Retrieves the file attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

char *
File attribute of the specified message.

Use tt_ptr_errar (), whichretums Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt_message_file_set(Tt_mes­
sage m,
canst char *file)

Sets the file attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

canst char *file
File name involved in this operation.

109

www.manaraa.com

Returned Value

Arguments

Returned VaLue

ReLated Functions
t t_mes sage_handler

Arguments

Returned VaLue

110

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_FILE

o TT_ERR_NOMP

o TT_ERR_POINTER

Retrieves the group ID attribute from the specified message.
The ToolTalk service automatically sets the group ID of a

message with the group ID of the process that created the
message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

gid_t
The group ID of the message. If the "nobody" group (65534)
is returned, the message handle is not valid.

tt_message_uid()

char *tt_message_handler(Tt_mes­
sage m)

Retrieves the handler attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

char *
Character value that uniquely identifies the process that
should handle the message (Tt_state = TT_CREATED or TT_
SENT) or the process that did handle the message (Testate
= TT_SENT or TT_HANDLED).

Usett-ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

www.manaraa.com

tt_message_handler_
ptype

Arguments

Returned Value

tt_message_handler_
ptype_set

Arguments

Returned Value

t t_mes sage_handler_
set

1.7.2 ToolTalk Functions

char *tt_message_handler-ptype
(Tt_message m)

Retrieves the handler ptype attribute from the specified mes­
sage.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

char *
Type of process that should handle this message.

Use tt-ptr_errar (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt_message_handler-ptype_
set (Tt_message m, canst char
*ptid)

Sets the handler process type (ptype) attribute for the speci­
fied message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

canst char *ptid
Type of process that should or did handle this message.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt_message_handler_set(Tt_
message m, canst char *pra­
cid)

Sets the handler attribute for the specified message.

111

www.manaraa.com

Arguments

Returned Value

Arguments

112

Tt_message m
Opaque handle for the message involved in this opera­
tion.

const char *procid
Character value that uniquely identifies the process you
want to handle the message.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt_message_iarg_add(Tt_mes­
sage m, Tt_mode n, constchar
*vtype, int value)

Adds a new argument to a message object and sets the value
to a given integer. Add all arguments before the message is
sent.

Note - Do not add arguments to a reply. Only change exist­
ing argument values with modes of TT_OUT or TT_INOUT.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_mode n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

o TT IN

OTT_OUT

o TT_INOUT

const char *vtype
Type of the value.

int value
Value to fill in.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Returned Value

Related Functions

Arguments

Returned Value

tt_message_object_
set

Arguments

1.7.2 ToolTalk Functions

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_MODE

o TT_ERR_NOMP

o TT ERR_POINTER

o TT_ERR_VTYPE

tt_message_arg_ival_set()

tt_message_arg_add()

tt_message_barg_add()

char *tt_message_object(Tt_mes­
sage m)

Retrieves the object attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

char *
Object involved in this message.

Use t t--ptr_error () ,which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT ERR_OBJID

o TT ERR_POINTER

Tt status tt_message_object_set(Tt_
message m, const char *obj id)

Sets the object attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

const char *objid
Object involved in this message.

113

www.manaraa.com

Returned Value

Arguments

Returned Value

Arguments

Returned Value

114

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

char

Retrieves the operation (op) attribute from the specified mes­
sage.

Tt_rnessage rn
Opaque handle for the message involved in this opera­
tion.

char *
Operation the receiver should perform.

Use tt-IJtr_error (), whichretums Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt_rnessage_op_set(Tt_rnes­
sage rn, const char *opnarne)

Sets the operation (op) attribute for the specified message.

Tt_rnessage rn
Opaque handle for the message involved in this opera­
tion.

const char *opnarne
Operation the receiver should perform.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned VaLue

Arguments

Returned VaLue

tt_message_otype_
set

1.7.2 ToolTalk Functions

int tt_message_opnum(Tt_message
m)

Retrieves the operation number (opnum) attribute from the
specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int
The number of the operation (opnum) involved in this mes­
sage.

Usett_int_error (), whichretumsTt_status, to de­
termine if the Tt_disposition integer is valid. Possible Tt_
status values are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

char *tt_message_otype(Tt_mes­
sage m)

Retrieves the object type (otype) attribute from the specified
message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

char *
Type of the object involved in this message.

UsettJ)tr_error (), whichretumsTt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt_message_otype_set(Tt_mes­
sage m, const char *otype)

Sets the object type (otype) attribute for the specified mes­
sage.

115

www.manaraa.com

Arguments

Returned Value

tt_message-pattern

Arguments

Returned VaLue

116

Tt_message m
Opaque handle for the message involved in this opera­
tion.

const char *otype
Type of the object involved in this message.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_OTYPE

o TT_ERR_POINTER

tt_message-pattern(Tt_mes­
sage m)

Retrieves the pattern attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_pattern
Opaque handle for a message pattern.

Use tt-ptr_error (), which returns Tt_status, to de­
termine if the handle is valid. Possible Tt status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Returns a handle for the next message waiting to be delivered
to your process. t t_message_recei ve () also runs any
message or pattern callbacks applicable to this message.
Check Tt_status with tt_message_status () to see if the
return value is TT_WRN_STARTING. If it is, the ToolTalk ser­
vice started your application to deliver this message. You
must reply to this message.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Returned Value

Arguments

Returned Value

1.7.2 ToolTalk Functions

Note - If the returned handle is 0, no message is available.
This can occur if a message or pattern callback processes the
message. It can also happen if the time between the t t_
fd () file descriptor becoming active and the tt_mes­
sage_recei ve () call is too long. The ToolTalk service will
time out and offer the message to another process.

Tt_message
Handle for the message object.

Use tt_ptr_error (), which returns Tt_status, to de­
termine if the handle is valid. Possible Tt status values
are:

OTT_OK

o TT ERR_NOMP

Tt status tt_message_reject(Tt_mes­
sage m)

Informs the ToolTalk service that your process can not handle
this message. The ToolTalk service will try other handlers.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT ERR_NOTHANDLER

o TT_ERR_POINTER

Tt status tt_message_reply(Tt_message
m)

Informs the ToolTalk service that your process has finished
handling the message, and all return values (any arguments
with the TT_OUT or TT_OUTIN mode) have been filled in.
The ToolTalk service will send the message back to the sender
and fill in the state attribute with TT_HANDLED.

117

www.manaraa.com

Arguments

Returned Value

Arguments

Returned VaLue

tt_message_scope_
set

118

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_status
The status of the operation. Possible values are:

o TT OK

o TT ERR_NOMP

o TT_ERR_NOTHANDLER

o TT_ERR_POINTER

o TT_ERR_PROCID

tt_message_scope(Tt_message
m)

Retrieves the scope attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_scope
Identifies the set of processes eligible to receive the message.
Possible values are:

OTT_SESSION

oTT_FILE

OTT_BOTH

OTT_FILE IN_SESSION

Use tt_int_error (), whichretums Tt_status, to de­
termineif the Tt_scope integeris valid. Possible Tt_status
values are:

OTT_OK

o TT ERR_NOMP

o TT ERR_POINTER

Tt status tt_message_scope_set(Tt_mes­
sage m, Tt_scope s)

Sets the scope attribute for the specified message.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

Arguments

Returned VaLue

1.7.2 ToolTalk Functions

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_scope s
Identifies the set of processes eligible to receive the message.
Possible values are:

OTT_SESSION

o TT FILE

OTT_BOTH

oTT_FILE IN_SESSION

Tt_status
The status of the operation. Possible values are:

o TT OK

o TT ERR_NOMP

o TT ERR_POINTER

Tt status tt_message_send(Tt_message
m)

Sends the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_ADDRESS

o TT_ERR_CLASS

o TT_ERR_FILE

o TT_ERR_NOMP

o TT_ERR_OBJID

o TT ERR_OTYPE

o TT_ERR_OVERFLOW

o TT_ERR_POINTER

119

www.manaraa.com

Arguments

Returned VaLue

tt_message_sender_
ptype

Arguments

Returned VaLue

120

o TT_ERR_PROCID

o TT_ERR_SESSION

o TT_WRN_STALE_OBJID

char *tt_message_sender(Tt_mes­
sage m)

Retrieves the sender attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

char *
Character value that uniquely identifies the process that
sent the message.

Use t tJltr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

char *tt_message_senderJltype(Tt_
message m)

Retrieves the sender ptype attribute from the specified mes­
sage.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

char *
Process that sent this message.

Use t t_ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

www.manaraa.com

tt_message_sender_
ptype_set

Arguments

Returned VaLue

Arguments

Returned Value

tt_message_session_
set

1.7.2 ToolTalk Functions

Tt status tt_message_sender-ptype_
set (Tt_message m, const char
*ptid)

Sets the sender ptype attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

const char *ptid
Type of process that is sending this message.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

char *tt_message_session(Tt_mes­
sage m)

Retrieves the session attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

char *
Identifier of the session to which this message applies.

Usett-ptr_error (), whichretumsTt_status,tode­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt_message_session_set(Tt_
message m, const char *ses­
sid)

Sets the session attribute for the specified message.

121

www.manaraa.com

Arguments

Returned Value

Arguments

Returned Value

122

Tt_message m
Opaque handle for the message involved in this opera­
tion.

canst char *sessid
Identifier of the session in which you are interested.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt state tt_message_state(Tt_message
m)

Retrieves the state attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

Tt_state
Indicates a message's current delivery state. Possible values
are:

OTT_CREATED

oTT_SENT

oTT_HANDLED

oTT_FAILED

oTT_QUEUED

oTT_STARTED

oTT_REJECTED

Use t t_int_errar (), whichretums Tt_status, to de­
termine if the Tt_state integer is valid. Possible Tt_status
values are:

OTT_OK

o TT_ERR_NOMP

o TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

Related Functions
tt_message_status_
set

Arguments

Returned Value

1.7.2 ToolTalk Functions

int tt_message_status(Tt_mes­
sage m)

Retrieves the status attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int
An integer that describes the status stored in the status at­
tribute of this message.

Usett_int_error (), whichretumsTt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt_message_status_set(Tt_
message m,
int status)

Sets the status attribute for the specified message.

Note - The status value must be greater than 2047 (TT_
ERR_LAST) to avoid confusion with the ToolTalk service
status values.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int status
Status to be stored in this message.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

123

www.manaraa.com

tt_message_status_
string

Arguments

Returned Value

Related Functions
tt_message_status_
string_set

Arguments

Returned Value

Related Functions

124

char *tt_message_status_
string(Tt_message m)

Retrieves the character string stored with the status attribute
for the specified message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

char *
Status string stored in this message.

Use tt-ptr_errar (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt_message_status_string_
set (Tt_message m, canst char
*status_str)

Sets a character string with the status attribute for the speci­
fied message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

canst char *status_str
Status string stored in this message.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Retrieves the user ID attribute from the specified message.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

Related Functions

Arguments

Returned VaLue

tt_message_user_
set

1.7.2 ToolTalk Functions

The ToolTalk service automatically sets the user ID of a
message with the user ID of the process that created the mes­
sage.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

uid_t
The user ID of the message, or the "nobody" user (65534) if
the message handle is not valid.

tt_message_gid ()

void *tt_message_user(Tt_message
m, int key)

Retrieves the user information stored in data cells associated
with the specified message object you created. Since the user
data is part of the message object (the storage buffer in your
application), not the actual message, you can only retrieve
user information that you placed on the message.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int key
User data cell in which you are interested. It must be unique
over all user data cells for this message.

void *
A piece of arbitrary user data that is one word in size.

Use tt-ptr_error (), whichretums Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt_message_user_set(Tt_mes­
sage m, int key,
void *v)

Stores user information in data cells associated with the spec­
ified message object.

125

www.manaraa.com

Arguments

Returned Value

Related Functions
tt_objid_equal

Arguments

Returned Value

126

Note that the user data is part of the message object (the
storage buffer in your application), not the actual message.
Data stored by the sender in user data cells is not seen by any
handlers or observers. Use arguments for data that handlers
or observers need to see.

Tt_message m
Opaque handle for the message involved in this opera­
tion.

int key
User data cell in which you are interested.

void *v
A piece of arbitrary user data that is one word in size.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

o TT_ERR_PROCID

tt_message_arg_add()

int tt_objid_equal(const char
*objidl, const char *objid2)

Tests to see if two objids are equal. t t_obj id_equal () is
better than s t rcmp for the purpose since it returns "1" even
in the case where one objid is a forwarding pointer for the
other.

const char *objidl
Identifier of one of the objects involved in this operation.

const char *objid2
Identifier of the other object involved in this operation.

int
Integer indicating whether or not the objids are equal. Possi­
ble values are:

o 0 - no

o 1 - yes

Usett_int_error (), which returns Tt_status, to de-

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned VaLue

Arguments

Returned VaLue

1.7.2 ToolTalk Functions

termine if the integer is valid. Possible Tt_status values
are:

o TT_ERR_NOMP

o TT ERR_OBJID

char *tt_objid_objkey(const char
*objid)

Returns the "unique key" portion of a objid.

const char *objid
Identifier of the object involved in this operation.

char *
Unique key of the objid. No two objids have the same
unique key.

Use t tJ)tr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_OBJID

tt_onotice_create(const char
*objid, const char *op)

Creates a message with:

• Tt_address = TT_OBJECT
• Tt_class = TT_NOTICE

The handle for the created message is returned so you can
add arguments, other attributes, and send the message.

const char *objid
Identifier of the desired object.

const char *op
Operation to be performed by the receiver.

Tt_message
The unique handle that identifies your message.

Use tt_ptr_error (), which returns Tt_status, to de­
termine if the handle is valid. Possible Tt status values
are:

127

www.manaraa.com

Returned Value

ReLated Functions

Arguments

Returned VaLue

128

OTT_OK

o TT ERR_NOMP

o TT_ERR_PROCID

char *tt_open(void)

Returns the process identifier (procid) for the calling process,
and sets this procid as the default procid for the process. t t_
open () is typically the first ToolTalk function you call from
your process.

A process may call t t_open () more than once to obtain
more than one procid. Each procid has its own associated
t t_fd () file descriptor, and can join another session. To
switch to another procid use tt_default_procid_
set ().

char *
Character value that uniquely identifies your process.

Use ttJltr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

tt_orequest_create(const
char *objid, const char *op)

Creates a message with:

• tt_address = TT_OBJECT
• tt_class = TT_REQUEST

The handle for the created message is returned so you can
add arguments, other attributes, and send the message.

const char *objid
Identifier of the desired object.

const char *op
The operation to be performed by the receiver.

Tt_message
The unique handle that identifies your message.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

Related Functions

Arguments

1.7.2 ToolTalk Functions

Usett_ptr_error (), which returns Tt_status, to de­
termine if the handle is valid. Possible Tt status values
are:

OTT_OK

o TT_ERR_NOMP

o TT_ERR_PROCID

char *tt_otype_base(const char
*otype)

Returns the base otype that the given otype is derived from,
or NULL if the given otype is not derived.

char *otype
Object type involved in this operation.

char *
Name of the base otype, or NULL if the given otype is not
derived.

Use tt---ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

o TT OK

o TT ERR_NOMP

o TT ERR_OTYPE

tt_otype_is_derived()

tt_otype_derived()

tt_otype_deriveds_count()

tt_spec_type ()

tt_message_otype()

char *t t_otype_deri ved (cons t char
*otype, int i)

Returns the i-th otype derived from the given otype.

const char *otype
Object type involved in this operation.

int i
Zero-based index into the otypes derived from the given
otype.

129

www.manaraa.com

Returned Value

Related Functions

tt_otype_deriveds_
count

Arguments

Returned Value

Related Functions

130

char *
Name of the i-th otype derived from the given otype.

Use t t-f)tr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT_ERR_NOMP

o TT_ERR_OTYPE

tt_otype_is_derived()

tt_otype_base()

tt_otype_deriveds_count()

t t_spec_type ()

int tt_otype_deriveds_count
(const char *otype)

Returns the number of otypes derived from the given otype.

const char *otype
Object type involved in this operation.

int
The number of otypes derived from the given otype.

Use tt_int_error (), which returns Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_OTYPE

tt_otype_is_derived()

t t_otype_base ()

tt_otype_derived()

t t_spec_type ()

Chapter 1. ToolTalk® Overview

www.manaraa.com

tt_otype_hsig_arg_
mode

Arguments

Returned VaLue

ReLated Functions

1.7.2 ToolTalk Functions

tt_otype_hsig_arg_mode
(const char *otype,
int sig, int arg)

Returns the It_mode of the arg'th argument of the sig'th re­
quest signature of the given otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the request signatures of the speci­
fied otype.

int arg
Zero-based index into the arguments of the specified signa­
ture.

Tt_mode
The It_mode of the specified argument, which determines
who (sender or handler) writes and reads a message argu­
ment. Possible modes are:

OTT_IN

oTT_OUT

o TT_INOUT

Use tt_int_error (), which returns Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_OTYPE

tt_otype_hsig_arg_type()

tt_otype_hsig_count()

tt_otype_hsig_args_count()

131

www.manaraa.com

tt_otype_hsig_arg_
type

Arguments

Returned Value

Related Functions

tt_otype_hsig_args_
count

Arguments

132

char *tt_otype_hsig_arg_type
(const char *otype, int sig,
int arg)

Returns the data type of the arg'th argument of the sig'th re­
quest signature of the given otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the request signatures of the speci­
fied otype.

int arg
Zero-based index into the arguments of the specified sig­
nature.

char *
Data type of the specified argument.

Use ttJ)tr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_OTYPE

tt_otype_hsig_arg_ffiode()

tt_otype_hsig_count()

tt_otype_hsig_args_count()

tt_otype_hsig_op()

int tt_otype_hsig_args_count
(const char *otype, int sig)

Returns the number of arguments of the sig'th request signa­
ture of the given otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the request signatures of the specified
otype.

Chapter 1. ToolTalk@ Overview

www.manaraa.com

Returned Value

Related Functions

Arguments

Returned VaLue

ReLated Functions

1.7.2 ToolTalk Functions

int
The number of arguments of the sig'th request signature of
the given otype.

Use tt_int_error (), which returns Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_OTYPE

tt_otype_hsig_arg_type()

tt_otype_hsig_arg_ffiode()

tt_otype_hsig_count()

tt_otype_hsig_op()

int tt_otype_hsig_count(const
char *otype)

Returns the number of request signatures for the given otype.

const char *otype
Object type involved in this operation.

int
The number of request signatures for the given otype.

Use tt_int_error (), which returns Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_OTYPE

tt_otype_hsig_arg_type()

tt_otype_hsig_arg_ffiode()

tt_otype_hsig_args_count()

133

www.manaraa.com

Arguments

Returned VaLue

ReLated Functions

Arguments

Returned Value

134

char *tt_otype_hsig_op (const char
*otype, int sig)

Returns the op name of the sig'th request signature of the
give otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the request signatures of the given
otype.

char *
Operation attribute of the specified request signature.

Use tt-ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_OTYPE

tt_otype_hsig_arg_type()

tt_otype_hsig_arg_rnode()

tt_otype_hsig_args_count()

tt_otype_hsig_count()

int tt_otype_is_derived(const
char *derivedotype, const
char *baseotype)

Returns 1 if and only if derivedotype is derived directly or
indirectly from baseotype.

const char *derivedotype
The purportedly derived otype.

const char ~baseotype
Candidate base otype.

int
Returns 1 if and only if derivedotype is derived directly or
indirectly from baseotype.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Related Functions

tt_otype_osig_arg_
mode

Arguments

Returned VaLue

1.7.2 ToolTalk Functions

Use tt_int_error (), which returns Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_OTYPE

tt_otype_deriveds_count()

t t_otype_base ()

tt_otype_derived()

tt_spec_type ()

tt_otype_osig_arg_ffiode
(const char *otype, int sig,
int arg)

Returns the Tt_mode of the arg'th argument of the sig'th no­
tice signature of the given otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the notice signatures of the specified
otype.

int arg
Zero-based index into the arguments of the specified signa­
ture.

Tt_ffiode
The Tt_mode of the specified argument, which determines
who (sender or handler) writes and reads a message argu­
ment. Possible modes are:

o TT IN

OTT_OUT

o TT_INOUT

Use t t_int_error () , which returns Tt_status, to de­
termine if the TCmode value is valid. Possible Tt_status
values are:

135

www.manaraa.com

Related Functions

tt_otype_osig_arg_
type

Arguments

Returned Value

Related Functions

136

OTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_OTYPE

tt_otype_osig_arg_type()

tt_otype_osig_count()

tt_otype_osig_args_count()

tt_otype_osig_op()

char *tt_otype_osig_arg_type
(const char *otype, int sig,
int arg)

Returns the data type of the arg'th argument of the sig'th no­
tice signature of the given otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the notice signatures of the specified
otype.

int arg
Zero-based index into the arguments of the specified signa­
ture.

char *
Data type of the specified argument.

Use t tJ)tr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_OTYPE

tt_otype_osig_arg_ffiode()

tt_otype_osig_count()

tt_otype_osig_args_count()

tt_otype_osig_op()

Chapter 1. ToolTalk® Overoiew

www.manaraa.com

tt_otype_osig_args_
count

Arguments

Returned VaLue

ReLated Functions

Arguments

Returned Value

1.7.2 ToolTalk Functions

int tt_otype_osig_args_count
(const char *otype, int sig)

Returns the number of arguments of the sig'th notice signa­
ture of the given otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the notice signatures of the specified
otype.

int
The number of arguments of the sig'th notice signature of the
given otype.

Use tt_int_error (), which returns Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_OTYPE

tt_otype_osig_arg_type()

tt_otype_osig_arg_ffiode()

tt_otype_osig_count()

tt_otype_osig_op()

int tt_otype_osig_count(const
char *otype)

Returns the number of notice signatures for the given otype.

const char *otype
Object type involved in this operation.

int
The number of notice signatures for the given otype.

Use tt_int_error (), which returns Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

137

www.manaraa.com

Related Functions

Arguments

Returned VaLue

ReLated Functions

tt-pattern_address_
add

138

o TT_ERR_NOMP

o TT_ERR_OTYPE

tt_otype_osig_arg_type()

tt_otype_osig_arg_ffiode()

tt_otype_osig_args_count()

tt_otype_osig_op()

char * t t_otype_os i g_op (cons t char
*otype, int sig)

Returns the op name of the sig'th notice signature of the give
otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the notice signatures of the given
otype.

char *
Operation attribute of the specified notice signature.

UsettJ)tr_error (), whichretumsTt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_NUM

o TT_ERR_OTYPE

tt_otype_osig_arg_type()

tt_otype_osig_arg_ffiode()

tt_otype_osig_args_count()

tt_otype_osig_count()

ttJ)attern_address_add(Tt_
pattern p, Tt_address d)

Adds a value to the address field for the specified pattern.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

Arguments

1.7.2 ToolTalk Functions

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue tt_pattern_create () .

Tt_address d
Specifies which pattern attributes form the address that mes­
sages will be matched against. Possible values are:

oTT_PROCEDURE

oTT_OBJECT

oTT_HANDLER

o TT_OTYPE

It_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt_pattern_arg_add(Tt-pat­
tern p, Tt_ffiode n, constchar
*vtype, const char *value)

Adds an argument to a pattern. Add pattern arguments be­
fore registering your pattern with the ToolTalk service.

Tt_pattern p
Opaque handle for the pattern involved in this operation.

Tt_ffiode n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

o TT IN

o TT OUT

const char *vtype
Type of the value. Use 'ALL' to match without regard to ar­
gument value type.

const char *value
Value to fill in (must be an unsigned character string.) Use
NULL to indicate that any value matches.

139

www.manaraa.com

Returned Value

Related Functions

Arguments

Returned Value

140

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_NOMP

o TT_ERR_POINTER

tt-pattern_barg_add()

tt-pattern_iarg_add()

tt-pattern_barg_add(Tt-pat­
tern ffi, Tt_ffiade n, canstchar
*vtype, canst unsigned char
*value, int len)

Adds an argument with a value containing imbedded nulls
to a pattern.

Tt-pattern ffi
Opaque handle for the pattern involved in this operation.

Tt_ffiade n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

oTT_IN

oTT_OUT

o TT_INOUT

canst char *vtype
Type of the value.

The ToolTalk service treats the value as an opaque byte
string. To pass structured data, your application and the re­
ceiving application must encode and decode these unique
values. The most common way of doing this is to use XDR.

canst unsigned char *value
Value to be filled in. Use NULL to specify that any value
matches.

int len
Length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

Chapter 1. ToolTalk® Overview

www.manaraa.com

Related Functions

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt_pattern_register()

tt_pattern_arg_add()

tt_pattern_iarg_add()

tt-pattern_callback_ Tt status
add

tt-pattern_callback_add(Tt_
pattern m,
Tt_message_callback f)

Arguments

Returned VaLue

1.7.2 ToolTalk Functions

Registers a callback function that will be automatically in­
voked by t t_message_recei ve () whenever a message
matches the pattern.

Tt_callback_act ion is an enum containing the values
TT_CALLBACK_CONTINUE and TT_CALLBACK_PRO­
CESSED. If the callback returns TT_CALLBACK_PRO­
CESSED, no further callbacks will be invoked for this event,
and the message will not be returned by t t_message_re­
cei ve (); if the callback returns TT_CALLBACK_CON­
TINUE, other callbacks will be run, and if no callback returns
TT_CALLBACK_PROCESSED, tt_message_receive()
will return the message.

Tt_pattern m
Opaque handle for the pattern involved in this operation.

Tt_message_callback f
Tt_message_callback is a type definition for a pointer
to a function declared like: Tt_callback_action
func (Tt_message m, Tt-pattern p). The callback
is passed the message in question and the pattern that
matched it.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

141

www.manaraa.com

Related Functions
tt-pattern_category

Arguments

Returned VaLue

ReLated Functions

tt-pattern_register()

tt-pattern_category(Tt-pat­
tern p)

Returns the category value of the specified pattern.

Tt_pattern p
Opaque handle for a message pattern.

Tt_category
Indicates the receiver's intent. Possible values are:

oTT_OBSERVE

oTT_HANDLE

Usett_int_error (), which returns Tt_status, to de­
termineifthe Tt_categoryintegeris valid. Possible Tt_sta -
tus values are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt-pattern_category_ Tt status
set

tt-pattern_category_set(Tt_
pattern P, Tt_category c)

Arguments

Returned Value

142

Fills in the category field for the specified pattern.

Tt-pattern p

A unique handle for a message pattern. You receive this han­
dle after you issue tt-pattern_create ().

Tt_category c
Indicates the receiver's intent. Possible values are:

OTT_OBSERVE

oTT_HANDLE

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_CATEGORY

o TT_ERR_NOMP

o TT_ERR_POINTER

Chapter 1. ToolTalk® Ouerview

www.manaraa.com

Related Functions
tt-pattern_class_
add

Arguments

Returned VaLue

Returned Value

1.7.2 ToolTalk Functions

tt-pattern_category()

tt-pattern_class_add(Tt-pat­
tern P, Tt_class c)

Adds a value to the class information for the specified pat­
tern. If the class is TT_REQUEST, the sender expects a reply
to the message. If the class is TT _NOT I CE, the sender will not
expect a reply.

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue tt-pattern_create ().

Tt_class c
Indicates whether or not the sender wants the receiver to take
action after the message is received. Possible values are:

oTT_NOTICE

oTT_REQUEST

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_NOMP

o TT_ERR_POINTER

tt-pattern_create(void)

Requests a new pattern object. After receiving the pattern ob­
ject, fill in the message pattern fields to indicate what type of
messages you want to receive and register this information
with the ToolTalk service.

Note - You can supply multiple values for each attribute
you add to a pattern (some attributes are set and only have
one value). The pattern attribute matches a message at­
tribute if any of the values in the pattern match the value in
the message. If no value is specified for an attribute, the
ToolTalk service assumes that you want any value to match.

Tt_pattern
Opaque handle for a message pattern. Use this handle in
future calls to identify the pattern object.

143

www.manaraa.com

Related Functions
tt-pattern_destroy

Arguments

Returned Value

Related Functions
tt-pattern_disposi­
tion_add

Arguments

144

Usett-ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

tt_pattern_register()

tt-pattern_destroy(Tt-pat­
tern p)

Destroys a pattern object. Destroying a pattern object auto­
matically unregisters the pattern with the ToolTalk service.

Tt-pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue tt-pattern_create ().

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt_pattern_register()

tt-pattern_disposition_ad­
d(Tt-pattern p, Tt_disposi­
tion r)

Adds a value to the disposition field for the specified pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue tt-pattern_create ().

Tt_disposition r
Indicates whether the receiver should be started to receive
the message or if the message should be queued until the
receiving process is started at a later time. The message can
also be thrown away if the receiver is not started. Possible
values are:

OTT_DISCARD

oTT_QUEUE

Chapter 1. ToolTalk® Overview

www.manaraa.com

Returned Value

Arguments

Returned Value

Arguments

1.7.2 ToolTalk Functions

OTT_START

o TT_QUEUE+TT_START

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt-pattern_file_add(Tt-pat­
tern p,
const char *file)

Adds a value to the file field of the specified pattern.

Note - When you join a file, the ToolTalk service updates
the file field of your registered patterns.

Tt-pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue tt-pattern_create () .

const char *file
Name of the file in which you are interested.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt-pattern_iarg_add(Tt-pat­
tern m, Tt_mode n,
const char *vtype, int value)

Adds a new argument to a pattern and sets the value to a
given integer. Add all arguments before the pattern is regis­
tered.

Tt_pattern m
Opaque handle for the pattern involved in this operation.

145

www.manaraa.com

Returned Value

Related Functions
tt-pattern_object_
add

Arguments

Returned VaLue

146

Tt_mode n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

OTT_IN

oTT_OUT

o TT_INOUT

const char *vtype
Type of the value.

int value
Value to fill in.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_MODE

o TT_ERR_NOMP

o TT_ERR_POINTER

o TT_ERR_VTYPE

tt_pattern_register()

Tt status tt-pattern_object_add(Tt_
pattern p, const char *obj id)

Adds a value to the object field of the specified pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue tt-pattern_create ().

const char *objid
Identifier for the specified object. Objid's are returned from
tt_spec_create() ortt_spec_move().

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Chapter 1. ToolTalk@Overview

www.manaraa.com

Arguments

Returned Value

tt-pattern_otype_
add

Arguments

Returned Value

tt-pattern_register

1.7.2 ToolTalk Functions

Tt status tt-pattern_op_add(Tt-pat­
tern P, const char *opname)

Adds a value to the operation field of the specified pattern.

Tt-pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue tt-pattern_create ().

const char *opname
The name of the operation (op) your process can perform.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status tt-pattern_otype_add(Tt-pat­
tern P, const char *otype)

Adds a value to the object type (otype) field for the specified
pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue tt-pattern_create () .

const char *otype
The name of the object type your application manages.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_OTYPE

o TT_ERR_POINTER

Tt status tt-pattern_register(Tt-pat­
tern p)

Registers your pattern with TT, so that your process will start
receiving messages that match the pattern. Once a pattern is
registered, no further changes can be made in the pattern.

147

www.manaraa.com

Arguments

Returned Value

Related Functions

Arguments

Returned Value

148

Note - When you join a session or file, the ToolTalk service
updates the file and session field of your registered pat­
terns.

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue ttJ)attern_create ().

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT ERR_POINTER

o TT_ERR_PROCID

tt_pattern_unregister()

ttJ)attern_scope_add(TtJ)at­
tern p,
Tt_scope s)

Adds a value to the scope field for the specified pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue ttJ)attern_create ().

Tt_scope s
Specifies which process are eligible to receive the message.
Possible values are:

oTT_SESSION

o TT FILE

o TT_FILE_IN_SESSION

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

www.manaraa.com

tt-pattern_sender_
add

Arguments

Returned Value

tt-pattern_sender_
ptype_add

Arguments

Returned Value

tt-pattern_session_
add

1.7.2 ToolTalk Functions

tt-pattern_sender_add(Tt_
pattern p, canst char *pra­
cid)

Adds a value to the sender field for the specified pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue tt-pattern_create ().

canst char *pracid
Character value that uniquely identifies the process in which
you are interested.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_NOMP

o TT_ERR_POINTER

Tt status tt-pattern_sender-ptype_ad­
d(Tt-pattern p, canst char
*ptid)

Adds a value to the sender's process type (ptype) field for the
specified pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue tt-pattern_create ().

canst char *ptid
Use the character string that uniquely identifies the type of
process in which you are interested.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_NOMP

o TT_ERR_POINTER

Tt status tt-pattern_sessian_add(Tt_
pattern p,
canst char *sessid)

Adds a value to the session field for the specified pattern.

149

www.manaraa.com

Arguments

Returned Value

tt-pattern_state_
add

Arguments

Related Functions

150

Note - When you join a session, the ToolTalk service up­
dates the session field of your registered patterns.

TtJ)attern p

A unique handle for a message pattern. You receive this han­
dle after you issue ttJ)attern_create ().

canst char *sessid
Session in which you are interested.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Tt status ttJ)attern_state_add(TtJ)at­
tern p, Tt_state s)

Adds a value to the state field for the specified pattern.

TtJ)attern p

A unique handle for a message pattern. You receive this han­
dle after you issue t tJ)at tern_create () .

Tt_state s
Indicates a message's current delivery state. Possible values
are:

OTT_CREATED

oTT_SENT

oTT_HANDLED

oTT_FAILED

oTT_QUEUED

oTT_STARTED

oTT_REJECTED

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

www.manaraa.com

tt-pattern_unregis­
ter

Arguments

Returned VaLue

ReLated Functions

Arguments

Returned Value

1.7.2 ToolTalk Functions

Tt status tt-pattern_unregister(Tt_
pattern p)

Unregisters the specified pattern from the ToolTalk service.
Your process will stop receiving messages that match this
pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue tt-pattern_create ().

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_NOMP

o TT ERR_POINTER

void *tt-pattern_user(Tt_pattern
p, int key)

Returns the value in the indicated user data cell for the spec­
ified pattern object.

Every pattern object allows an arbitrary number of user
data cells, each one word (a void *) in size. The user data
cells are identified by integer keys. Your tool can use these in
any way you see fit, to associate arbitrary data with a pattern
object. Note that the user data is part of the pattern object (the
storage buffer in your application), not the actual pattern.
The content of user cells has no effect on pattern matching.

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue t t-pat tern_create () .

int key
User data cell in which you are interested. Your application
assigns the keys to the user data cells which are part of the
pattern object with tt-pattern_user_set (). Values
must be unique over all data cells for this pattern.

void *
String containing a piece of arbitrary user data that is one
word in size.

151

www.manaraa.com

Related Functions

Arguments

Returned VaLue

ReLated Functions
tt-pnotice_create

152

Use ttJltr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

ttJlattern_user_set(TtJlat­
tern p, int key, void *v)

Stores information in the user data cells associated with the
specified pattern object.

Tt_pattern p
A unique handle for a message pattern. You receive this han­
dle after you issue ttJlattern_create ().

int key
User data cell in which you are interested. Values must be
unique over all data cells for this pattern.

void *v
String containing a piece of arbitrary user data that is one
word in size.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

ttJlnotice_create(Tt_scope
scope, const char *op)

Creates a message with:

• Tt3ddress = TT_PROCEDURE
• Tt_class = TT_NOTICE

The handle for the created message is returned so you can
add arguments, other attributes, and send the message.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

Arguments

1.7.2 ToolTalk Functions

Tt_scope scope

A portion of the message that helps determine which pro­
cesses are eligible to receive the message. A potential recipi­
ent could be joined to:

oTT_SESSION

oTT_FILE

oTT_BOTH

o TT_FILE_IN_SESSION

If the scope is TT_SESSION, the Session is set to the cur­
rent default session. If the scope is TT_FILE, the File is set to
the current default file. If the scope is BOTH or FILE_IN_
SESSION, both File and Session are set to the defaults.

const char *op
The operation to be performed by the receiver.

Tt_message
The unique handle that identifies your message.

If ToolTalk is unable to create a message when requested,
an invalid handle will be returned to you. When you attempt
to use this handle, the ToolTalk service will report an error.

Use t tJ)tr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_NOMP

o TT_ERR_PROCID

Tt status ttJ)ointer_error(void
*pointer)

Given an opaque pointer (Tt_message or Tt_pattern), or
character pointer (char *), returns TT_OK if the pointer is
valid or the encoded Tt_status value if the pointer is an
error object.

To avoid the annoyance of having to cast the opaque or
character pointer to void * in every call, a macro t tJ)tr_
error (p) is provided that expands to tt_pointer_er­
ror((void *) (p)).

void *pointer
Opaque pointer or character pointer to be checked.

153

www.manaraa.com

Returned Value

Arguments

Returned VaLue

154

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_POINTER

tt-prequest_create(Tt_scope
scope, const char *op)

Creates a message with:

• Tt_address = IT_PROCEDURE
• Tt_class = IT_REQUEST

The handle for the created message is returned so you can
add arguments, other attributes, and send the message.

Tt_scope scope
A portion of the message that helps determine which pro­
cesses are eligible to receive the message. A potential recipi­
ent could be joined to:

oTT_SESSION

oTT_FILE

oTT_BOTH

o TT FILE_IN_SESSION

If the scope is TT_SESSION, the Session is set to the cur­
rent default session. If the scope is TT_FILE, the File is set to
the current default file. If the scope is BOTH or FILE_IN_
SESSION, both File and Session are set to the defaults.

const char *op
The operation to be performed by the receiver.

Tt_message
The unique handle that identifies your message.

If ToolTalk is unable to create a message when requested,
an invalid handle will be returned to you. When you attempt
to use this handle, the ToolTalk service will report an error.

Use tt-ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned VaLue

Arguments

Returned VaLue

Arguments

1.7.2 ToolTalk Functions

o TT ERR_NOMP

o TT_ERR_PROCID

Tt status tt-ptr_error(pointer)

A macro that expands to tt_pointer_error ((void
*) (p)).tt_ptr_error() helps you avoid the annoyance
of having to cast the opaque or character pointer to void *
in every call.

pointer
Pointer to the Tt status code.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT ERR_POINTER

Tt status tt-ptype_declare(const char
*ptid)

Registers your process type (ptype) with the ToolTalk ser­
vice.

const char *ptid
Use the character string specified in your ptype that uniquely
identifies your process.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT_ERR_PTYPE

void tt_release(int mark)

Frees all storage allocated on the ToolTalk API allocation
stack since your t t_mark () call.

Your application typically calls this at the end of a proce­
dure to release all storage allocated within the procedure.

int mark
Integer that marks your application's storage position in the
ToolTalk API allocation stack.

155

www.manaraa.com

Related Functions
tt_session_bprop

Arguments

Returned Value

156

Tt status tt_session_bprop(const char
*sessid, const char *prop­
name, int i, unsigned char
**value, int *length)

Obtains the i-th value (first value is number 0) of the named
property of the session identified by sessid. If there are i val­
ues or fewer, both returned value and returned length are
zeroed.

const char *sessid
The session you have joined. Use the sessid value the
ToolTalk service returns after you issue t t_defaul t_ses­
sion().

const char *propname
The name of the property from which you want to obtain
values.

int i
The number of the item in the property list for which
you want to obtain the value. The list numbering begins
with o.
unsigned char **value
Address of a character pointer that the ToolTalk service
should aim to a string containing the contents of the property.

int *len
Address of an integer that the ToolTalk service should set to
the length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_NUM

o TT_ERR_PROPNAME

o TT_ERR_SESSION

Chapter 1. ToolTalk® Overview

www.manaraa.com

tt_session_bprop_
add

Arguments

Returned Value

tt_session_bprop_
set

1.7.2 ToolTalk Functions

unsigned char **value
Address of a character pointer that the ToolTalk service
aimed at a string containing the contents of the property.

int *len
Address of an integer that the ToolTalk service set to the
length of the value in bytes.

Tt status tt_session_bprop_add(const
char *sessid,
const char *propname,
const unsigned char *value,
int length)

Adds a new byte-string value to the end of the list of values
for the named property of the session identified by sessid.

const char *sessid
Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt_default_ses­
sion ().

const char *propname
The name of the property to which you want to add values.

const unsigned char *value
The value to add to the session property.

int length
The size of the value in bytes.

Tt_status
The status of the operation. Possible values are:

o TT OK

o TT ERR_DBAVAIL

o TT ERR_DBEXIST

o TT ERR_NOMP

o TT_ERR_PROPLEN

o TT_ERR_PROPNAME

o TT_ERR_SESSION

Tt status tt_session_bprop_set(const
char *sessid, const char

157

www.manaraa.com

Arguments

Returned VaLue

Arguments

158

*prapname, canst unsigned
char *value, int length)

Replaces any current values stored under the named prop­
erty of the session identified by sessid with the given byte­
string value.

canst char *sessid
Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt_default_ses­
sian ().

canst char *prapname
The name of the property whose value you want to replace.

canst unsigned char *value
The value to which the session property is set. If value is
NULL, the property is removed entirely.

int length
The size of the value in bytes.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_PROPLEN

o TT_ERR_PROPNAME

o TT_ERR_SESSION

Tt status tt_sessian_jain(canst char
*sessid)

Joins the session named by the provided string and makes it
the default session for your process.

canst char *sessid
Name of the session you wish to join. Use the sessid value
the ToolTalk service returns after you issue tt_default_
sessian(), tt_X_session(), or tt initial ses­
sion ().

Chapter 1. ToolTalk® Overview

www.manaraa.com

Returned Value

Related Functions

Arguments

Returned Value

1.7.2 ToolTalk Functions

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_PATH

tt_default_session()

char *tt_session-prop(const char
*sessid, const char *prop­
name, int i)

Returns the i-th value (first value is number 0) of the spec­
ified session property.

Note - If this value has embedded nulls, you have no way
to determine how long it is. Use tt_session_bprop ()
for values with embedded nulls.

const char *sessid
Name of the session you have jOined. Use the sessid value
the ToolTalk service returns after you issue tt_default_
session() .

canst char *propname
The name of the property from which you want to retrieve a
value. The name must be less than 64 characters.

int i
The number of the item in the property name list for
which you want to obtain the value. The list numbering
begins with O.

char *
The value of the requested property. NULL is returned if there
are i values or fewer.

Use t t-ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

159

www.manaraa.com

Arguments

Returned VaLue

tt_session-prop_
count

160

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_NUM

o TT_ERR_PROPNAME

o TT_ERR_SESSION

Tt status tt_session-prop_add(const
char *sessid, const char
*propname, const char *value)

Adds a new character-string value to the end of the list of
values for the property of the specified session.

const char *sessid
Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue t t_defaul t_ses­
sion() .

const char *propname
The name of the property to which you want to add a value.
The name must be less than 64 characters.

const char *value
The character string you want to add to the property name
list.

Tt status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_PROPLEN

o TT_ERR_PROPNAME

o TT_ERR_SESSION

int tt_session-prop_count(const
char *sessid, const char
*propname)

Chapter 1. ToolTalk@Overview

www.manaraa.com

Arguments

Returned Value

Arguments

Returned VaLue

1.7.2 ToolTalk Functions

Returns the number of values stored under the named prop­
erty of the session identified by sessid.

const char *sessid
Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt_default_ses­
sion() .

const char *propname
The name of the property you want to examine.

int
The number of values in the specified property list.

Usett_int_error (), which returns Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT _ERR_NOMP

o TT_ERR_PROPNAME

o TT_ERR_SESSION

Tt status tt_session-prop_set(const
char *sessid, const char
*propname, cons t char *val ue)

Replaces all current values stored under the named property
of the session identified by sessid with the given character­
string value.

const char *sessid
Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt_default_ses­
sion() .

const char *propname
The name of the property you want to examine.

const char *value
The new value you want to insert. If you want to remove a
value from the property list, specify the value as NULL.

It_status
The status of the operation. Possible values are:

161

www.manaraa.com

tt_session-propname

Arguments

Returned VaLue

tt_session-prop­
names_count

162

OTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_PROPLEN

o TT_ERR_PROPNAME

o TT_ERR_SESSION

char *tt_session-propname(const
char *sessid, int n)

Returns the n-th element of the list of currently-defined prop­
erty names for the session identified by sessid.

const char *sessid
Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt_default_ses­
sion() .

int n
The number of the item in the property name list for
which you want to obtain the name. The list numbering
begins with o.
char *
The name of the desired property from the session property
list. NULL is returned if there are n properties or fewer

Usett-ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_NUM

o TT_ERR_SESSION

int tt_session-propnames_count
(const char *sessid)

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

Arguments

Returned Value

1.7.2 ToolTalk Functions

Returns the number of currently-defined property names for
the session.

canst char *sessid
Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue t t_defaul t_ses­
sian ().

int
The number of property names for the session.

Use tt_int_errar (), which returns Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT ERR_NOMP

o TT_ERR_SESSION

Tt status
TT_ERR_SESSION

TT ERR_DBEXIST

TT ERR_DBAVAIL

Tt status tt_sessian_quit(canst char
*sessid)

Informs the ToolTalk service that your application is no
longer interested in this ToolTalk session. The ToolTalk ser­
vice will stop delivering messages scoped to this session.

canst char *sessid
Name of the session you want to quit.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_NOMP

o TT ERR_SESSION

o TT_WRN_NOTFOUND

163

www.manaraa.com

Arguments

Returned VaLue

164

Tt status tt_spec_bprop(const char
*objid, constchar*propname,
int i, unsignedchar**value,
int *length)

Retrieves the i-th value (first value is number 0) of this prop­
erty.

const char *objid
Identifier of the object involved in this operation.

const char *propname
Name of the property in which you are interested. The name
must be less than 64 characters.

int i
Item of the list in which you are interested. The list number­
ing begins with O.

unsigned char **value
Address of a character pointer that the ToolTalk service
should aim to a string containing the contents of the
spec's property. If there are i values or fewer, the pointer will
be set to O.

int *len
Address of an integer that the ToolTalk service should set to
the length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_NUM

o TT_ERR_OBJID

o TT_ERR_PROPNAME

unsigned char **value
Address of a character pointer that the ToolTalk service
aimed at a string containing the contents of the property.
If there are i values or fewer, the pointer will be set to O.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

1.7.2 ToolTalk Functions

int *len

Address of an integer that the ToolTalk service set to the
length of the value in bytes. If there are i values or fewer,
the length will be O.

Tt status t t_spec_bprop_add (const char
*objid, const char *propname,
const unsigned char *value,
int length)

Adds a new byte-string to the end of the list of values asso­
ciated with this spec property.

const char *objid
Identifier of the object involved in this operation.

const char *propname
Name of the property in which you are interested.

const unsigned char *value
Byte string you want to add to the property value list.

int length
Length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_OBJID

o TT_ERR_PROPLEN

o TT ERR_PROPNAME

Tt status t t_spec_bprop_set (const char
*objid, constchar*propname,
const unsigned char *value,
int length)

Replaces any current values stored under this spec property
with a new byte-string.

165

www.manaraa.com

Arguments

Returned Value

Arguments

Returned Value

166

canst char *abjid
Identifier of the object involved in this operation.

canst char *prapname
Name of the property in which you are interested.

canst unsigned char *value
Byte string you want to add to the property value list.

Note: If the value is NULL, the property is removed en­
tirely.

int length
Length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_OBJID

o TT_ERR_PROPLEN

o TT_ERR_PROPNAME

char *tt_spec_create(canst char
*filepath)

Creates a spec (in memory) for an object. Use the objid that
the ToolTalk service returns in future calls to manipulate the
object.

Note - The object will not be a permanent ToolTalk item or
visible to other processes until the creating process does a
t t_spec_wri te () .

canst char *filepath
Filename.

char *
Identifier for this object.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Related Functions

Arguments

Returned VaLue

Arguments

Returned Value

1.7.2 ToolTalk Functions

Use tt-ptr_error (), whichretums Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_OTYPE

o TT_ERR_PATH

tt_spec_type_set()

tt_spec_write ()

Tt status tt_spec_destroy(const char
*objid)

Immediately destroys an object's spec.

const char *objid
Identifier of the object involved in this operation.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT _ERR_NOMP

o TT_ERR_OBJID

char *tt_spec_file(const char
*obj id)

Retrieves the name of the file containing the object described
by the spec.

const char *objid
Identifier of the object involved in this operation.

char *
The file's absolute pathname.

167

www.manaraa.com

Arguments

Returned Value

168

Use ttJ)tr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_OBJID

char *tt_spec_ffiove(const char
*objid, const char *newfile­
path)

Notifies the ToolTalk service that this object has moved to a
different file. The ToolTalk service returns a new objid for the
object, and a forwarding pointer is left from the old objid to
the new one.

Note - If a new objid is not required (because the new and
old files are in the same file system), TT_WRN_SAME_OBJID
is returned.

For efficiency and reliability, your application should re­
place any references it has to the old objid with references to
the new one.

const char *objid
Identifier of the object involved in this operation.

const char *newfilepath
New file name.

char *
New unique identifier of the object involved in this opera­
tion.

Use ttJ)tr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_DBAVAIL

o TT ERR_DBEXIST

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

1.7.2 ToolTalk Functions

o TT_ERR_NOMP

o TT_ERR_OBJID

o TT_ERR_PATH

o TT_WRN_SAME_OBJID

char *tt_spec-prop(const char
*objid, const char *propname,
int i)

Retrieves the i-th value (first value is number 0) of the prop­
erty associated with this object spec.

Note - If this value has embedded nulls, you have no way
to determine its length.

const char *objid
Identifier of the object involved in this operation.

const char *propname
Name of the property in which you are interested.

int i
Item of the list in which you are interested. The list num­
bering begins with O.

char *
Contents of the property value. A NULL value is returned if
there are i values or less.

Use tt_ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_NUM

o TT_ERR_OBJID

o TT_ERR_PROPNAME

169

www.manaraa.com

Arguments

Returned Value

Related Functions

Arguments

Returned Value

170

tt_spec-prop_add(const char
*objid, const char *propname,
const char *value)

Adds a new item to the end of the list of values associated
with this spec property.

const char *objid
Identifier of the object involved in this operation.

const char *propname
Property in which you are interested.

const char *value
New character-string to be added to the property value list.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_OBJID

o TT_ERR_PROPNAME

o TT_ERR_PROPLEN

tt_spec-prop_set()

int tt_spec-prop_count(const
char *objid, const char
*propname)

Returns the number of values listed in this spec property.

const char *objid
Identifier of the object involved in this operation.

const char *propname
Name of the property in which you are interested.

int
Number of values listed in the spec property.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

1.7.2 ToolTalk Functions

Use tt_int_errar (), whichretums Tt_status,to de­
termine if the integer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_OBJID

o TT_ERR_PROPNAME

tt_spec-prap_set(canst char
*abjid, canst char *prapname,
canst char *value)

Replaces any values currently stored under this property of
the object spec with a new value.

canst char *abjid
Identifier of the object involved in this operation.

canst char *prapname
Name of the property in which you are interested.

canst char *value
Value you want to put in the property value list. If value is
NULL, the property is removed entirely.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_OBJID

o TT_ERR_PROPNAME

o TT_ERR_PROPLEN

171

www.manaraa.com

Related Functions
tt_spec-propname

Arguments

Returned VaLue

tt_spec-propnames_
count

Arguments

Returned Value

172

char *tt_spec-propname (const char
*objid, int n)

Returns the n-th element of the property name list for this
object spec.

const char *objid
Identifier of the object involved in this operation.

int n
Item of the list in which you are interested. The list number­
ing begins with O.

char *
Property name. NULL is returned if there are n properties or
less.

Use tt-ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT ERR_NUM

o TT_ERR_OBJID

int tt_spec-propnames_count
(const char *objid)

Returns the number of property names for this object.

const char *objid
Identifier of the object involved in this operation.

int
Number of values listed in the spec property.

Use tt_int_error (), which returns Tt_status, to de­
termine if the integer is valid. Possible Tt_status values
are:

o TT ERR_DBAVAIL

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

Arguments

Returned Value

1.7.2 ToolTalk Functions

o TT ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_OBJID

char *tt_spec_type(const char
*objid)

Returns the name (otid) of the object type.

const char *objid
Identifier of the object involved in this operation.

char *
Type of this object.

Use ttJ)tr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

OTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT_ERR_NOMP

o TT_ERR_OBJID

Tt status tt_spec_type_set(const char
*objid,
const char *otid)

Assigns an object type (otype) value to the object spec. The
type must be set before the spec is written for the first time,
and cannot be changed thereafter.

const char *objid
Identifier of the object involved in this operation.

const char *otid
Otype you want to assign to the spec.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT_ERR_DBAVAIL

o TT_ERR_DBEXIST

173

www.manaraa.com

Related Functions

Arguments

Returned Value

Related Functions

Arguments

Returned Value

174

o TT_ERR_NOMP

o TT_ERR_OBJID

o TT_ERR_READONLY

tt_spec_create ()

tt_spec_write ()

Tt status tt_spec_write{const char
*objid)

Writes the spec and any associated properties to the ToolTalk
database. It is not necessary to do a write after a destroy.

Note - Several changes can be "batched" between write
calls; for example, you might create an object spec, set some
properties, and then write all the changes at once with one
write call.

const char *objid
Identifier of the object involved in this operation.

Tt_status
The status of the operation. Possible values are:

oTT_OK

o TT ERR_DBAVAIL

o TT_ERR_DBEXIST

o TT _ERR_NOMP

o TT_ERR_OBJID

char *tt_status_message{Tt_sta­
tus ttrc)

Returns a pointer to a message describing the problem indi­
cated by this Tt_status code.

Tt_status ttrc
Tt_status code you received during an operation.

char *
Pointer to character string describing Tt_status code.

Chapter 1. ToolTalk® Overview

www.manaraa.com

Arguments

Returned Value

1.7.2 ToolTalk Functions

Usett-ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

char *tt_X_session(const char
*xdisplaystring)

Returns the session associated with the named X Wmdow
System display.

const char *xdisplaystring
Name of an XlI display server, such as somehost:O, :O,and

so forth.

char *
Identifier for the current ToolTalk session.

Use t t-ptr_error (), which returns Tt_status, to de­
termine if the pointer is valid. Possible Tt_status values
are:

175

www.manaraa.com

CHAPTER 2
SPARCompiler™ Compilation
Technology

2.1
Introduction

The SPARCompiler family of robust, optimizing compilers
and environments provides the cornerstone of Sun's soft­
ware engineering portfolio. With seven powerful compil­
ers-Ada, C, C++, COBOL, Common Lisp, FORTRAN, and
Pascal-and the full range of SPARCsystem platforms, Sun
offers you the advantage of a single source for the system and
tools you need to make the most of your software develop­
ment investment.

Designed in concert with SPARC technology, SPARCom­
piler products take full advantage of the SPARC architecture
to provide optimization that delivers unprecedented perfor­
mance. The code generation modules of the SPARCompiler
products utilize state-of-the-art innovations in compiler tech­
nology, particularly in code optimization. Because compil­
ers for SPARC and other Reduced Instruction Set Computer
(RlSC) architectures synthesize instruction sequences that
correspond to Complex Instruction Set Computers' (CISC)
more complicated instructions, RISC compilers often pro­
duce more instructions (up to 20% more) than comparable
CISC machines. However, these are almost all single-cycle
instructions. Therefore, good optimization technology plays
a very important role in SPARC system performance.

www.manaraa.com

2.2
SPAR Compiler
Family Overview

Table 2.1. Features/benefits.

Features

An individual SPARC machine is an implementation of
the SPARC Instruction Set Architecture (lSA). The perfor­
mance of a SPARCsystem is a function of the architecture, the
hardware implementation, and the code generated by the
compiler. Because the SPARC ISA and SPARCompiler tech­
nology were developed in concert, the compilers take careful
advantage of the architecture to improve performance.
Among the architectural features SPARC includes are:

• Register windows
• Delayed branches and delayed loads
• Hardware interlocks
• Floating-point coprocessors

Optimized for the SPARC architecture and hardware im­
plementations, SPARCompiler products can significantly in­
crease application speed and therefore play an integral role
in the performance of SPARCsystems.

The seven members of the SPARCompiler family-Ada, C,
C++, COBOL, Common Lisp, FORTRAN, and Pascal-all
share key features that enhance each product, enable coordi­
nation between the products, and maximize your develop­
ment dollar. The major features, and their benefits, are as
shown in Table 2.1.

Benefits

Optimized for the SPARC architecture Deliver unprecedented performance on SPARC
platforms.

Interlanguage calling Because they enable you to combine your existing code
with modules written in other languages,
SPARCompilers protect your current software
investment.

Multiple levels of optimization Provide flexibility to control compile-time versus
execution-time and memory size versus space trade-offs
in the compiled code.

International character set support Meet the needs of global markets.

Industry and de facto standards Ensure compatibility and portability while providing
competitive advantages through language
enhancements.

178 Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

Features Benefits

Access to graphics and Reduce time and resources required for sophisticated
OpenWindowsTM XView™ libraries, applications and shorten time to market.
UNIX system calls, and SunOS™
enhanced utilities.

Integration with SPARCworks
programming tools and the
Open Windows window system.

2.3
C, C++,
FORTRAN, and
Pascal

Compiler Structure

2.3 C, C++, FORTRAN, and Pascal

Create an integrated development environment that
enhances programmer productivity.

The Sun SPARCompiler products combine lexical, syntac­
tic, and static semantic components (the language "front
ends") with code generation and optimization modules (the
language "back ends"). Four of the SPARCompiler prod­
ucts-C, C++, FORTRAN, and Pascal-share the same back
end, while the other three back ends provide language spe­
cific optimizations and features. As Figure 2.1 shows, all
seven languages are targeted to the SPARC architecture and
are supported by powerful programming environments.

The next section describes the C, C++, FORTRAN, and
Pascalcompilers, while the following three sections discuss
the Ada, Common Lisp, and COBOL compilers.

As mentioned above, four of the SPARCompilers-C, C++,
FORTRAN, and Pascal-share a single, very efficient back
end. These particular languages share a common back end
due to the characteristics of the languages themselves, histor­
ical engineering effort at Sun, and the needs of the develop­
ment tool environments. The major benefit of focusing
engineering efforts on a common back end is that any perfor­
mance improvement or bug fix enhances all four of these
compilers.

Figure 2.2 shows how a program flows through the compila­
tion phases that transform it into an executable program. The
solid arrows describe the path when optimization and inline
code expansion are both enabled. When either is disabled,
certain components are skipped.

Sun's optimization technology is designed to satisfy sev-
eral goals, including:

• Support for multiple source languages
• Production of high-quality, high-performance code
• Reduction of compilation time to no more than neces­

sary to do ambitious optimization

179

www.manaraa.com

SPARCompiler Features

Robustness Performance Standards Support

SPARCworks

Sun Sun Sun Sun Sun Sun Sun

C C F P A C C
+ 0 d 0 0
+ R a B m T 0 m R L 0 A n

L
i
s
p

Common Back End

Figure 2.1. SPARCompiler features.

180

The rest of this section describes the various phases of the
compilation process, with emphasis on optimization.

Preprocessors are programs that manipulate source text;
they transform the code into a form acceptable by a compiler
or assembler. cpp is the most widely used preprocessor. It
is independent of any language (although it was designed to
be used with C) and can be used to define symbolic constants,
insert files into the source stream, expand macros, and con­
ditionally compile segments of code.

The front end scans and parses the source-language state­
ments that constitute a procedure and checks static seman­
tics. The target of the front end is an intermediate language
called Sun IR (Intermediate Representation). Sun IR is a lan­
guage- and machine-independent representation that is suit­
able for global optimization and code generation. The
following features of Sun IR facilitate global optimization:

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

Sun C++

loop inversion
const.lnl propagation

delelion of unreachable code

elimination of ulmecessary jumps
leaf routine: optimization

instruction scheduling
register coalescing

eros jumping

SunC Sun FORT RAN

Representation

Code Generation
(eg , as ,

Pascal

auto-inlining

rcgi tcr alloca tion
tail call optimization
constant propagation
dead code elimination

comple.x expression cxp.msion
common subexpl\."Ssion elimination

induction-variable strength reduction
algcbrJic address expression rcorg.

detection of interesting variables
loop-invariant code motion
tail recursion elimination

aggregate breaking
alias determinatiOll

Figure 2.2. SPARCompiler structure and features.

2.3 C, C++, FORTRAN, and Pascal

• A language-independent symbol table structure that ex­
plicitly represents storage classes, constants and vari­
ables

• Facilities to represent static equivalencing and dynamic
aliasing

• A general framework for control flow analysis, data
flow analysis, and most advanced global optimization
techniques.

The following short sections summarize the features of the
four front ends that share the common back end.

181

www.manaraa.com

SunCTM

Sun FORTRANTM

182

Sun C offers an ANSI C language compliant compiler, as well
as an advanced K&R version. With the ANSI C compiler,
your programs are fully portable across all ANSI C plat­
forms. 'The two compilers included in Sun C allow you the
flexibility to choose between these different C languages. 'The
Sun C package also provides the following features:

• Function prototyping to ensure better static type check­
ing of programs. Static type checking enables you to
find logic errors at compile time, which reduces soft­
ware development and maintenance time.

• Language enhancements, such as the canst and vol­
at i 1 e keywords, help improve program correctness by
allowing better control of variables and improving the
scope of optimization.

• Multi-byte characters support writing code that can be
localized to particular countries.

• -fsingle command-line options permit FORTRAN­
like floating-point expression evaluation. This option
enables developers to write computation-intensive ap­
plications in C.

Sun C++ implements the complete C++ language as de­
scribed in American Telephone &Telegraph's C++ Language
System Product Reference Manual. Sun C++ also incorporates
all the functionality of AT&T's latest cfront C++ translator.
'The features of Sun C++ include:

• ANSI C facilities
• Position-independent code generation
• Enhanced cpp preprocessor that handles C++ tokens
• A set of classes commonly used in the development of

object-oriented programs.

Sun FORTRAN provides an ANSI FORTRAN 77 develop­
ment system with VAXjVMSTM FORTRAN 4.0 extensions.
Sun FORTRAN conforms to the ANSI X3.9-1978 and ISO
1539-1980 FORTRAN standards. In addition, it has been val­
idated by NIST and conforms to FIPS 69-1 BS6832 and MIL­
STD 1753. 'The features of Sun FORTRAN include:

• Extensive VMS compatibility
• Complex expression optimization
• Fast and accurate degree-based transcendental func­

tions
• Support for C preprocessor directives

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

Sun Pascal™

2.3 C, C++, FORTRAN, and Pascal

• DO/ENOOO and DO WHILE statements.

Sun has also added several other extensions to the FOR­
TRAN compiler for supercomputer compatibility, including
the POINTER datatype and quad- precision floating point.

Sun Pascal is an optimizing, feature-rich compiler for Pascal,
a widely used structured language originally designed as an
aid for teaching programming. Sun Pascal fully conforms to
ISO Level 0 Pascal (equivalent to ANSI/IEEE 770X3.97 -1983).
Sun Pascal also offers language extensions compatible with
many Pascal compilers, specifically those of HP / Apollo 00-
MAIN® Pascal. Sun Pascal's features include:

• Conformant arrays, as specified in the ISO Levell Pas­
cal Standard

• Variable-length string type
• Single- and double-precision IEEE floating-point sup­

port
• PUBLIC and PRIVATE declarations
• External C and FORTRAN declarations

After lexical, syntactic and static semantic processing, the
remainder of the compilation steps are performed by the
back end shared by the C, C++, FORTRAN, and Pascal prod­
ucts.

The machine-independent ("global") optimizer is called
iropt. It is applied to files and begins by performing auto­
matic inlining, followed by alias analysis. Next a series of
data flow analyses and transformations are applied to each
procedure in the file. For example, data flow analysis could
determine that a variable has the same constant value every
time control reaches a particular point, and is therefore a can­
didate for replacement by a constant. The result of the trans­
formations is a modified version of the Sun IR for the
program.

Automatic inlining provides many benefits. Obviously
modules that have been inlined have no "procedure call
overhead." In addition, by moving the body of the module
into the caller, many new opportunities for optimization are
created. In effect, this provides interprocedural analysis.

The aliaser module deals with problems of aliases arising
from the presence of multiple names that map to the same
memory areas. It is essential to good optimization that the
range of possible aliases be determined. Variables that are
aliases do not readily lend themselves to optimization.

183

www.manaraa.com

184

Therefore it is essential to minimize the range of aliases when
doing ambitious optimization. In standard FORTRAN, the
set of names that may refer to the same location may be de­
termined exactly. This is known as "static aliasing." Lan­
guages such as C, C++, Sun's extended FORTRAN, and
Pascal introduce an additional challenge called dynamic
aliasing. For example, in C, aliases may arise from memory
overlaps, array references, use of pointers, etc. Dynamic
aliases are defined as aliases that cannot be determined ex­
actly and are therefore given special attention by the aliaser
module.

The following additional global optimizations are per­
formed by iropt. Definitions of these optimizations can be
found in "Appendix A-Optimization Definitions."

• Aggregate breaking
• Algebraic address expression reorganization
• Common subexpression elimination
• Complex expression expansion
• Copy and constant propagation
• Dead code elimination
• Induction-variable strength reduction
• Loop-invariant code motion
• Loop unrolling
• Global register allocation
• Tail call optimization

The in liner performs inline assembly language expansion.
Inline expansion provides a way for the compiler writer or
user to specify assembly language code sequences to replace
source-language calls. To do this, the compiler writer and/
or user provides a collection of "inline template files." The
greatest service provided by the assembler inliner is that spe­
cial code sequences (such as special supervisor instructions,
and implementation dependent instructions) can be ac­
cessed without changes to the compilation system. In addi­
tion, Sun provides some templates to accelerate performance
of some common library interfaces.

The postpass optimizer performs the following local opti­
mizations. Definitions can be found in "Appendix A-Opti­
mization Definitions."

• Constant propagation
• Cross jumping
• Dead code elimination

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

Levels of
Optimization

2.3 C, C++, FORTRAN, and Pascal

• Elimination of redundant loads/stores
• Elimination of unnecessary jumps
• Instruction scheduling
• Leaf routine optimization
• Loop inversion
• Register coalescing

The assembler then generates relocatable object code. The
linker then:

• Combines separately compiled object files
• Resolves intermodule references
• Searches libraries to satisfy unresolved references.

In the case of static linking, the linker combines the relo­
catable object with other necessary relocatable objects (com­
monly from library files), and produces the executable file.
Dynamic linking is a bit more complicated.

The SPARCompilers support several levels of optimization
that require various amounts of compilation time and pro­
duce correspondingly varying code quality. The default is to
do no optimization at all. This is not recommended for any
use except debugging, where it is important to minimize
compilation time. Each level includes the optimizations of
the previous levels. In addition to the "no optimization"
level, these are:

01
At this level, only postpass optimization is invoked. Using
level 01 is recommended only if the higher levels of optimi­
zation result in excessive compilation time, or running out of
swap space.

02
This invokes all the global optimizations, except automatic
inlining prior to code generation.

Note - This is the standard optimization level for most mod­
ules.

03
This performs the same optimizations as 02, but on a wider
class of expressions, including references and definitions of
external and indirect variables.

185

www.manaraa.com

186

04
This level traces, as carefully as it can, what pointers may
point to, and makes them candidates for optimization. It also
invokes automatic inlining. This level of optimization is rec­
ommended for the most computation-intensive modules,
and not recommended for modules that are not computa­
tion-intensive.

Multiple levels of optimization are provided because ag­
gressive optimization involves trade-offs:

• Compile time vs. execution time
• Memory space vs. execution time

As a rule of thumb, higher levels of optimization increase
compile time, decrease execution time and require more
memory and disk space to compile programs. Figure 2.3
shows optimization trade-offs using the SPECmark bench­
mark test.

For some programs, levels 03 and 04 significantly in­
crease compilation time with a small effect on run-time per­
formance beyond that provided by level 02. In these cases
the developer may choose to compile at level 02 to avoid the
compile-time penalty. In fact, in some cases, by optimizing
different procedures at different levels, you can produce
overall faster executing code. Use of multiple optimization
levels is usually the best way to enhance performance for a
large application. Level options can easily be encoded in a
Makefile.

Another feature of the back end is automatic back-off of
the optimization level. If the compilation of a routine would
fail due to lack of sufficient swap space, the optimizer auto­
matically recompiles that routine (only) at the next lower op­
timization level. When this happens, the user is alerted by
means of a warning message.

Selection of optimization flags has been simplified for the
common case. Typically, users want a single option, and de­
fine their intent as "to generate the best code possible in a
reasonable amount of time that runs well on my machines."
The - fa s t compiler option is intended to provide this. It
provides a convenient way to get near maximum perfor­
mance with one switch by bundling together several inde­
pendent options. Any subset of -fast attributes can be
specified explicitly as indicated below.

The - fa s t option combines:

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

22.00

20.00

18.00

16.00

14.00

OJ

~ 12.00 ..
8
~

10.00 ~
til

8.00

6.00

4.00

2.00

0.00

Optimization level no-opt 01 02 03 04

Lines compiled/min 16,00 9,200 6,200 5,100 3,300

Figure 2.3. Effect of optimization level on execution time and compilation time. SPECmark
tests run on a SPARCstation 2 with SunOS 4.1.4, using Sun Fortran 1.4 and Sun C 1.1.

2.3 C, C++, FORTRAN, and Pascal

• Default optimization level: in the absence of an explicit
- On option following - fa s t, uses -02 to obtain the best
trade-off between compile and execution time.

• Best choice for compile-time hardware: In the absence
of an explicit -cg{87,89} on SPARC-based systems, -
fast generates the fastest code for the hardware of the
compile-time machine.

• -dalign: assumes double word alignment of double­
precision floating-point variables in FORTRAN, unless
-nodalign is explicitly specified after -fast.

• - f sing 1 e: for C code, generates single-precision float­
ing-point expression evaluation for single-precision op­
erands.

187

www.manaraa.com

2.4
Ada

188

• -libmil: uses the Sun-provided libm. il inline ex­
pansion templates automatically after any user-speci­
fied templates.

• -fnonstd: causes hardware traps to be enabled for
floating-point overflow, division by zero, and invalid
operation exceptions, rather than following the IEEE
standard.

- fa s t is an option that provides a feature many Sun users
have requested. It picks the most popular options, balancing
compilation and execution speeds, assumes that the target
machine is identical to the compilation machine and exploits
every major compilation feature available. It does not pro­
vide the highest level of optitimization (-fast -04 accom­
plishes that), and it does assert that double-precision values
are double word aligned; therefore it is not suitable for all
programs under all conditions.

Sun Ada™ combines a fast, full-featured optimizing com­
piler with automated program-generation tools for minimal
recompilations, library management utilities that enhance
compiler performance, and a complete suite of programming
tools. The Sun Ada optimizing compiler, based on the Verdix
compiler system, is the heart of the Sun Ada language sys­
tem. Highly tuned for SPARC-based systems, the Sun Ada
compiler features exceptionally fast complilation for quick
throughput and productive development.

The Sun Ada compiler is constructed of three major com­
ponents. The front end performs lexical, syntactic and se­
mantic analysis on Ada source code and emits a target
independent linear intermediate language (IL). The ILis pro­
cessed by an optimizer (OPTIM) and then the code generator
(CG) produces SPARC object code. The OPTIM optimizing
module performs many modem code optimizations, several
of which are specific to Ada. The front end also handles some
optimizations, such as automatic inlining, that contribute to
the speed of the code produced. In addition to optimizations
in generated code, a passive task optimization has been in­
troduced that can improve rendezvous times for some com­
mon uses of tasks by as much as a factor of eight. Also, the
exception tables and look-up algorithms have been opti­
mized to yield fast exception-handling performance.

Figure 2.4 shows the Sun Ada development environment.

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

-
ADA

Source ~

- Ada
Program l-

t.
LIBRARY

MANAGEMENT
TOOLS

Figure 2.4. Sun Ada.

Optimizations

2.4 Ada

Sun
FRONT END w(Ada

l. Lexical Analysis Compiler
2 . Syntactic Analysis
3. Syntactic Error Recovery
4. Semantic Analysis

X
if ,

- J

- -
Linear .. Raw ERROR
Inter- DIANA f- -mediate (tree)

Error PROCESSOR
Langu,,&,

T -
I'

IL OPTIMIZER
,

I Source
and Error

Optimiz-
Listing

l.
2.
3.

ed

T
CODE GENERATOR

Code Generation
Code Optimization
Peephole Optimization

Runtime

i
System
Objects

-.-Object

H LINKER f. Execut-File

~ PRE-LINKER able ~ SYMBOLIC
DEBUGGER -

The following optimizations are performed automatically by
the Sun Ada compiler. All three components of the compiler,
the front end, the optimizer, and the code generator contrib­
ute optimizations. Definitions of these options can be found
in II Appendix A-Optimization Definitions."

• Algebraic Address Expression Reorganization
• Common Subexpression Elimination
• Constant Folding
• Copy Propagation
• Dead Code Elimination
• Elimination of Redundant Loads/Stores
• Elimination of Unnecessary Jumps
• Induction-Variable Strength Reduction

189

www.manaraa.com

Fast Exceptions

Passive Tasks

190

• Loop-Invariant Code Motion
• Optimized Block Moves
• Range Propagation for Elimination of Constraint

Checking
• Register Allocation

OPTIM constructs a flowgraph for each Ada subprogram
and then builds a Directed Acyclic Graph (DAG) for each ba­
sic block. The optimizer is iterative; it repeatedly applies a
set of simple transformations to the flow graph, until no fur­
ther opportunities for optimization are detected or until a
specified iteration limit has been reached. This structure
makes the optimizer reliable and easy to understand and
maintain. Performance of the optimizer depends more on
the complexity of the control flow in the Ada source code
than on the number of source lines.

When programming close to the machine level, certain op­
timizations must be suppressed. Compiler switches offer
several levels of optimization and allow optimizations that
involve code motion to be suppressed. The pragma OPT I -

MI ZE_CODE (OFF I ON) can suppress or re-enable optimiza­
tion for a specific subprogram or package. The pragma
VOLATILE (object_name) guarantees that loads and stores to
the named object will be performed as expected after optimi­
zation.

One key Sun Ada design decision is that adding an exception
handler to a subprogram (or block) should not slow down
the normal execution of that subprogram. In particular, ex­
ception handlers do not incur any performance penalties un­
less an exception is raised. This is a highly desirable feature,
but it has the drawback of complicating the handling of ex­
ceptions. For user code that raises exceptions frequently, this
optimization improves performance by computing complex
tables at link time that permit high-speed searches for the
proper exception handler. As a result of this optimization,
Sun Ada customers have the best of both worlds; there is no
overhead for normal execution in subprograms that contain
exception handlers, and when an exception is raised, excep­
tion handling is very fast.

The passive task optimization is a textbook example of: "Pro­
gram semantics exposed by the programming language can
be optimized by the compiler." It simply recognizes that a
large percentage of all Ada tasks are used exclusively to seri-

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

Remote Compilation

Large Program
Support

Interlanguage
Calling

2.4 Ada

alize activities-for example, to serialize access to a data
structure. Passive task optimization can be viewed as com­
piling each accept block into a subprogram and each task en­
try into a semaphore. The other half of the optimization
occurs when compiling a call to the passive task. Instead of
generating calls to the run-time system to do a rendezvous,
calls are generated to lock the semaphore and do a procedure
call. Semaphores and procedure calls are much faster than
full-blown rendezvous, especially because they involve only
one task (as opposed to two), since the passive task is never
made known to the run-time system. On return from the
rendezvous, a special resume handler activates one of the
tasks suspended on the semaphore, if any.

Passive tasks are a general class of task that includes
"monitors." Monitor tasks are extremely important to fast
performance in typical Ada real-time situations, and both
Sun Ada and the accompanying debugger support it com­
pletely.

The - L option to the compiler and many other Sun Ada tools
permits the user to specify the name of the Ada library con­
text in which the compilation is to take place. This means
that only one copy of a source file need exist, even if it is
shared by projects being developed for different target envi­
ronments (for example, both the development host and an
embedded target).

Many of the Sun Ada tools have been enhanced to support
very large programming projects. For example, the prelinker
is designed to compute quickly the elaboration order of large
numbers of units.

The Ada language defines the INTERFACE pragma for call­
ing subprograms written in other languages. Sun Ada fully
supports the INTERFACE pragma for C, C++, FORTRAN,
and Pascal. Sun Ada also supports two additional pragmas,
INTERFACE_NAME and EXTERNAL_NAME, which allow Ada
to access global data declared in other languages and allow
other languages to call Ada subprograms (callbacks). These
and other aspects of this topic are covered in detail in the
"Interface Programming" section of the Sun Ada Program­
mer's Guide.

191

www.manaraa.com

Miscellaneous
Optimizations and
Pragmas

2.5
Sun Common
LispTM

192

Ada elaboration order checks are eliminated for packages
with static elaboration (for example, those with no dynamic
initialization of library level or global variables).

Sun Ada also supports inline subprogram expansion for
all types of procedures and functions, including generic and
machine-code procedures. Not only does this eliminate call
overhead, but it also allows optimizers to work across sub­
program boundaries.

Sun Ada shares generic bodies, so multiple instantiations
of a generic with similar parameters use the same object code.
This saves code space at the expense of execution time. Sun
Ada does support unshared instantiation, so actual parame­
ters can be propagated throughout a generic body.

The following are some of the more important pragmas
supported by Sun Ada:

pragma NOT_ELABORATED

Suppresses the generation of elaboration code for library
packages and issues warnings for constructs that require
elaboration.

pragma INLINE_ONLY

Suppresses generation of a callable version of the
subprogram. Otherwise behaves the same as INLINE.

pragma NON_REENTRANT

Uses a statically allocated parameter block for parameter
passing and reduces call overhead. Can only be applied
to subprograms nested immediately within a library
package.

pragma NO_IMAGE

Suppresses the generation of image tables for enumeration
types. Use of the IMAGE attribute causes an error message.
This does not affect the debugger's ability to display enu­
meration values symbolically.

Sun Common Lisp is now available exclusively from Lucid
Inc. of Menlo Park, California.

Sun Common Lisp is an implementation of Common Lisp
with extensive enhancements to reflect the proposed ANSI
Common Lisp standard. Sun Common Lisp is a general-pur­
pose programming language with a rich set of built-in func­
tions for processing both symbolic and numerical data and a
wide variety of predefined data types. Sun Common Lisp
provides the flexibility that comes from run-time binding of

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

The Common Lisp
Object System
(CLOS)

Dual Compiler
System

2.5 Sun Common LispTM

functions and from the fact that Lisp programs can be very
naturally processed as Lisp data.

Beyond this, Sun Common Lisp is an interactive program-
ming system that includes:

• An interpreter
• An incremental compiler
• A garbage collector
• Window interfaces
• An object-oriented programming system
• Adebugger
• An error-handling facility.

Features like the Lisp View interface for the X Window sys­
tem, the Multitasking Facility, and the Foreign Function In­
terface, among others, are major extensions beyond the
proposed Common Lisp standard. Many of these develop­
ment environment features and tools are described in the
SPARCworks Development Environment white paper. The rest
of this section provides an overview of CLOS, the Sun Com­
mon Lisp dual compilation system and SPARC support for
Lisp.

Sun Common Lisp supports the Common Lisp Object Sys­
tem, an object-oriented extension to Common Lisp, that is
part of the forthcoming draft ANSI Common Lisp standard.
eLOS has its origins in other Lisp-based object-oriented par­
adigms such as Flavors and CommonLoops. eLOS incorpo­
rates the years of experience gained from these models, and
has been designed to run on a large array of hardware plat­
forms and operating systems.

Among the fundamental notions of eLOS are classes, in­
stances, generic functions, and methods. Important features
of the system are inheritance (including multiple inherit­
ance), method combination, and multi-methods.

For application delivery, Sun Common Lisp offers CLOS
extensions that precompile the dispatch code used by generic
functions. Although CLOS applications run correctly with­
out a compiler or precompiled dispatch code, they run faster
if the dispatch code is precompiled.

Sun Common Lisp has two distinct compilation modes: one
that emphasizes compilation speed and one that emphasizes
run-time performance.

193

www.manaraa.com

Optimization
Reporting Facility

194

• The development mode compiles the code quickly with
few optimizations. Frequent compilations during the
development of a Lisp application make compilation
speed an important factor in programmer productivity.

• The production mode fully optimizes the compiled code
for the most efficient run-time performance available.
Most users use the production mode of the compiler
when they have completed development of a section of
code and compile it for the final time.

The Lisp production mode compiler does constant folding
and constant propagation, dead code elimination, and tail
call optimization (tail recursion elimination and tail merg­
ing). Type declarations are not necessary in Lisp; however,
when used they allow the compiler to do further optimiza­
tions. With appropriate declarations in the source code, the
compiler will

o Eliminate run-time type checking for arithmetic oper­
ations

o Generate fast code for standard integer computation
and for floating-point computation

o Provide fast array access

In many cases the compiler will automatically propagate
type information to parts of the code that do not contain dec­
larations.

Development mode is the default, but the user can change
the compilation mode by changing the optimization setting
of the compiler. In production mode, the user can also spec­
ify the amount of run-time error checking, or safety, retained
in the compiled code. The development mode inherently re­
tains a high degree of safety.

Users have typically found a three to five times improve­
ment in compilation speed when they use development
mode rather than the production mode. Run-time degrada­
tion is roughly 50%, depending on the nature of the program.
Part of the performance advantage of the development com­
piler comes from its generating less garbage to be paged or
collected.

The user can increase the efficiency of code compiled when
using the production mode by providing type declarations
that eliminate run-time type checking. In addition, the com­
piler helps the user optimize code by displaying reports

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

Foreign Function
Interface

EphemeraL Garbage
Collection

Multitasking (Stack
Groups)

2.5 Sun Common Lisp ™

about the optimization attempts that it makes while it com­
piles code. Optimization reports describe instances where
the compiler optimized a section of code and when it did not,
but could have, if it had more type information. This useful
information allows users to add declarations that improve
the performance of an application and reduce the amount of
time spent optimizing code.

Sun Common Lisp provides a Foreign Function interface that
allows users to link compiled C, C++, Pascal, and FORTRAN
code with Lisp programs and to link Lisp programs into ex­
ecuting C, C++, Pascal, and FORTRAN code. The Foreign
Function Interface automatically handles the data type coer­
cions necessary to pass data between Lisp and the foreign
code.

Correspondence between Lisp types and a set oflow-Ievel
foreign data types is predefined, and Sun Common Lisp pro­
vides constructs for defining new foreign structure types.
Foreign data structures can be accessed in Lisp and passed
back and forth between the different languages.

The Ephemeral Garbage Collector (EGC) replaces long gar­
bage collection intervals with several shorter intervals that
are generally imperceptible to users. Most garbage collec­
tions last only a few milliseconds, so that productive devel­
opment time or execution of critical applications is not
interrupted.

When the EGC is on, new Lisp objects are created in a
small consing area, which when full, can be collected quickly.
Objects from this small ephemeral area that survive the gar­
bage collection process migrate to more long-lived areas of
memory where garbage is collected less frequently, resulting
in more focused garbage collection of only highly volatile ar­
eas. When all ephemeral levels have been filled with objects,
the entire system can be collected with the stop-and-copy col­
lector. The EGC can be turned on or off as desired, so that
garbage collection does not impact the system at any partic­
ular time.

Lisp 4.0 includes the capability to run lightweight processes,
implemented in stack groups, for multitasking Lisp applica­
tions. The Multitasking Facility allows the user to schedule
execution of multiple processes running concurrently in the
same Lisp environment. The advantage of using the Multi-

195

www.manaraa.com

SPARe Support for
Lisp

196

tasking Facility is that it allows users to split larger jobs into
separate tasks that execute independently.

The Multitasking Facility has its own scheduler that uses
state information to stop a process and restart it later without
changing the results of its execution. Lisp also provides con­
structs for handling and scheduling processes that make the
implementation of multiprocessing applications both easy
and natural. In addition, within Sun Common Lisp the de­
veloper can set the priorities of processes to control execu­
tion.

In the past, Lisp programs have had a reputation for slow
execution compared to other compiled languages. This
slowness has been largely due to the high degree of flexibility
and the sophisticated error detection and recovery facilities
that are the hallmarks of Lisp. For example, each arithmetic
operation is generally preceded by one or more instructions
that examine the type of each operand and then branch to the
appropriate type of operation. Any program that must per­
form these checks at runtime is at a performance disadvan­
tage when compared to less flexible languages such as C and
FORTRAN, which make those decisions during compilation.

One way to make Lisp run faster is to eliminate some of
the run-time type checks. The programmer has the option to
declare that a given variable will always hold values of a spe­
cific type. The compiler can then eliminate the type-checking
instructions and produce object code with performance and
safety comparable to other programming languages.

The disadvantage of such an approach is that it eliminates
some of the flexibility designed into Lisp. The programmer
can trade the advantage of flexibility and easier-to-debug
programs for faster execution. On Sun workstations the op­
timization reports greatly facilitate this step, but it is still a
necessary part of the development cycle.

Historically, Lisp machines have been noted for their han­
dling of this problem. In such special-purpose computers,
type checking of operands does not require additional in­
structions. Instead, the check is done as part of the machine
instruction either in special hardware or in microcode. De­
velopers could take advantage of all of Lisp's flexibility and
still have programs run quickly. This efficiency comes at a
price, though: compared to general-purpose workstations,
Lisp machines are more expensive, have a less flexible and

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

Tagged Arithmetic

2.5 Sun Common LispTM

less open architecture, and are harder to integrate with other
systems.

TheSPARC architecture used in theSun-4™ andSPARC­
system product families offers Sun Common Lisp developers
many of the more important advantages of the dedicated
Lisp machine without the problems associated with a spe­
cialized combination of hardware and software. SPARC
provides Lisp application programs the potent combination
of excellent run-time performance and the ability to detect
the most common errors very quickly.

Finally, since a typical Lisp program consists of a large
number of small functions, Sun Common Lisp takes advan­
tage of the SPARC register windows. The compiler uses reg­
ister windows to achieve very fast function calling and
argument processing. It is particularly effective in cases that
involve a shallow stack of called functions that pass a small
number of arguments and programs for which tail call opti­
mization is effective. The speed of this function-calling
mechanism can have a major impact on application perfor­
mance.

Lisp provides programmers with a number of interesting op­
portunities to trade execution time for ease of debugging. In
general, for every increase in execution-time performance,
there is a decrease in program flexibility and available infor­
mation for error analysis. As an example, consider the fol­
lowing simple function:

(defun adder (first second)
(+ first second))
The programmer has not provided any information as to

the type of arguments to be passed to adder. Because of
this, a test must be done at runtime to identify the kind of
addition to be performed. This test adds a sizeable overhead
to execution of the function.

If the programmer knows that only f ixnum (single-pre­
cision integer) values will be passed to the function and that
the result of the addition will also be a f ixnum, then it is
possible to inform the Lisp compiler of this through type dec­
larations, as shown below:

(defun adder (first second)
(declare (fixnum first second))
(the fixnum (+ first second)))
If the optimization parameters for speed and safety of gen­

erated code are set to maximum and minimum values re-

197

www.manaraa.com

198

spectively, then the Lisp compiler is free to bypass the type
checking and generate code for f ixnurn addition. However,
if either value passed to this faster version of adder is not a
f ixnurn, then it produces an erroneous result, rather than
returning a correct (possibly non-f ixnurn) value or report­
ing an error. Normally, it is not possible to catch this sort of
error without paying a run-time penalty.

SPARCsystem computers offer an elegant solution to this
speed vs. safety problem with their tagged arithmetic in­
structions. These instructions divide the value to be pro­
cessed into two fields, as shown below:

30-bit signed integer

I

Special instructions in the SPARC architecture support
addition and subtraction between tagged integers. The tag
fields are checked at the same time the arithmetic is per­
formed. If the tag fields of both arguments are zero, then they
are f ixnurns and the result is returned. If either tag is non­
zero or an arithmetic overflow occurs, then a condition code
is set. Optionally, the instruction can cause a trap to occur on
a nonzero tag or f ixnurn overflow.

In the fully declared adder function above, the tagged
add and trap on overflow instruction permit fast execution
and still provide excellent error detection. If the arguments
and results are as declared, then the generated code wastes
no time in error detection. A non-f ixnurn result causes a
trap to a routine that allocates and returns an extended-pre­
cision integer (a bignurn). An invalid argument causes a
trap to the Lisp debugger.

If declarations are not used, the tagged add instruction
uses a condition code to identify its outcome. If both argu­
ments are f ixnurns, execution time increases over the fully
declared function by one conditional branch instruction (in
production mode of the compiler). If the tagged add fails,
then a generic addition function is invoked that can handle
all types of numeric data.

This means that Sun Common Lisp on SPARCsystems
can be counted on to deal correctly with any error that results
from f ixnurn addition or subtraction without any sacrifice
in execution speed. While other computer systems require
that programmers risk an incorrect result to get the fastest

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

possible execution, SPARC's tagged arithmetic instructions
offer Lisp developers high speed and error detection.

Tag Bits for List Processing As the name of the language might imply, processing of
linked lists is a common activity in Lisp programs. The car
(find the value of the current list element) and cdr (find the
next list element) operations are executed frequently. (A list
element, in the sense used here, is also known as a cons cellI.)
It is not unusual for a malfunctioning program to attempt to
take the car or cdr of something that is not a valid list ele­
ment. This is an error that most Lisp systems detect at higher
compiler safety settings.

2.5 Sun Common Lisp ™

On SPARe-based systems, the misuse of car and cdr is
always detected, even with safety set to O. Lisp takes advan­
tage of the SPARC architecture's requirement that word-ori­
ented loads and stores require word-aligned addresses, that
is, ones that are divisible by four. An invalid address invokes
a trap handler that in turn reports the precise cause of the
error to the Lisp debugger.

As for f ixnuInS, Sun Common Lisp divides pointers into
data and tag fields. This time, the data field is the address of
the target value without the two low-order bits. In a valid
word pointer, these rightmost bits are always zero. In Sun
Common Lisp, a list element has a tag value of 1. All other
types of Lisp objects have tag values other than 1.

Lisp uses the combined word-address-and-tag value of a
list element as its base address. This address, with its tag
value of I, actually points to the second byte of the first word
of the list element, as shown:

word offset of start of list element o 1

word offset of start of next list element (cdr) tag

word offset of start of this list element (car) tag

1. The object ni 1 is also considered a list element for present purposes; the
mechanism described here works correctly for ni 1.

199

www.manaraa.com

2.6
SunCOBOLTM

Sun COBOL
Compiler and
Interpreter

200

The address of the cdr of a list element is this base value
minus 1, and the address of the car is the base value plus 3.
If the target of the operation is a valid list element, then car
or cdr always produces an address on a word boundary.
Taking the car or cdr of any other type of object always
causes a trap, because the calculated address is not divisible
by four. Because invalid address detection is an integral part
of SPARC address processing, no additional time is neces­
sary to detect this type of error.

This is another case where a compiler safety setting of 0 in
Sun Common Lisp offers as high a degree of error detection
as a much higher setting on other Lisp systems, without the
overhead other systems experience.

The Sun COBOL product is based on the MicroFocus™ com­
piler system. The basic MicroFocus product has been en­
hanced by Sun Microsystems to provide superior perfor­
mance on networked file systems. This enhancement was
accomplished by replacing the general C-ISAM file handler
with the Sun NetISAMTM file handler. The NetISAM file
handler gives better network performance for indexed-se­
quential files across a network. The COBOL section of the
SPARCompiler Benchmark white paper highlights the dra­
matic performance improvements attained through the use
of this optimized file handler.

Sun COBOL programs can call any procedure using the
C parameter-passing mechanism.

The Sun COBOL compiler system was validated in 1990
by the National Institute of Standards and Technology
(NIST) as compliant at the high level with ANSI X3.23-1985
"Programming Language COBOL." The system also com­
plies with all other relevant standards, including ISO 1989-
1985 and FIPS PUB 21-2, and is XPG3 compliant.

The compiler system has the classic division into front end
and back end components that communicate through an in­
termediate code file. In addition, there is an interpreter /
loader utility, cobrun, that can execute the intermediate
code produced by the front end, and can load the SPARC
code produced by the code generator.

The front end lexically, syntactically and semantically an­
alyzes the source code; the back end is a code generator that
outputs SPARC instructions in a form similar to that used in
.0 files, known as "generated code form." This generated
code file can be loaded and run using the interpreter /loader

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

Choosing Between
Interpreted,
Generated, and
Compiled Code

utility cabrun. The back end can also use ld to produce
statically linked executable modules in system-standard
a . au t format.

The trade-offs of these different translation alternatives
are examined in the next section.

Each of the three translated forms-interpreted, generated,
and compiled-has different attributes. Thus, the compiler
provides flexibility that allows users to tailor their code de­
velopment and execution to suit the needs of each specific
situation. The code translation alternatives are depicted in
Figure 2.5.

A file that contains interpreted form code can be inter­
preted on any Micro Focus platform, not only SPARC sys­
tems. Interpreted form is particularly convenient for Inde­
pendent Software Vendors (ISVs) who develop portable ap­
plications, or for programmers who want to port an applica­
tion from a Micro Focus system on other hardware to a Sun
workstation.

compiler front end intermediate code

interpreted form

Compile option: cob -a foo. cbl

Produces files: foo. int, foo. idy

Attributes: + small file
+ code is statically linked

interpreter Iloader

generated code form

cob -u foo. cbl

foo.gnt

+ small file

+ uses dynamic loading + uses dynamic loading
+ runs on any MicroFocus platform
+ can user debugger - cannot use debugger
- slow on CPU-bound code + fast on CPU-bound code

code

Uses:

- needs interpreter Iloader

+ debugging
+ portable applications

Figure 2.5. Code translation alternatives.

2.6 Sun COBOUM

- needs interpreter Iloader

+ small, fast executable
+ benchmarking

a.out

a.outform

cob -x foo. cbl

foo, foo.o

- large file

+ uses dynamic loading

cannot use debugger
+ fastest on CPU-bound

+ self-contained executable

+ huge, fast executable

201

www.manaraa.com

Dynamic Loading in
Sun COBOL

Flags, Directives,
and Switches for Sun
COBOL

202

The "dynamic loading" referred to in this document should
be distinguished from the SunOS "dynamic linking" feature.
Dynamic loading is a feature of the MicroFocus implementa­
tion that loads COBOL modules at runtime, rather than
binding them together permanently into an executable at
link time. When a UNIX file that contains COBOL source
code is compiled to intermediate or generated code form, a
. int or . gnt file is created for each COBOL program
within that file. As the programs are called at runtime, the
corresponding. int and. gnt files are dynamically brought
into memory by the Sun COBOL Runtime System (RTS) for
interpretation or execution. However, dynamic loading does
convey an advantage similar to dynamic linking: executables
are much smaller than statically linked a. out programs be­
cause common libraries are accessed at runtime.

There are two recommended uses of dynamic loading of
COBOL modules. First, an ISV can construct an application
so that its major parts are contained in separate. int or . gnt
files. These parts are then invoked by the main program and
dynamically loaded by the RTS as the features they imple­
ment are used. When an application is structured in this
manner, the ISV can issue updates to customers by supplying
only the. int or . gnt files that require replacement. This
structure may significantly reduce maintenance costs of the
application.

The second use of dynamic loading is for debugging large
applications consisting of many modules. If the code is kept
in separate dynamically loadable COBOL modules, individ­
ual ones can be recompiled for debugging by simply recom­
piling those files with the -a option of the cob command.
This procedure debugs only those modules that were recom­
piled with the -a option; this saves significant maintenance
and development costs for that application.

There are three methods to communicate information to the
compiler and run-time system:

1. Through command-line flags

2. Through compiler options (also known as "direc­
tives")

3. Through run-time switches.

There are approximately thirty command-line flags.
These flags control aspects of the compilation process (such

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

cob -a -v

as the form of compilation, the name of the output file, and
various linking attributes}.

There are approximately one hundred compiler options.
These options adjust the semantics of the language that the
compiler accepts. For example, compiler options are avail­
able that recognize COBOL features specific to IBM Micro­
soft COBOL, to flag features outside a specified dialect, and
to change record type defaults to variable length. In addi­
tion, there are an additional dozen compiler directives spe­
cifically for the code generator. System-wide default
compiler directives are set for all programs in the file /usr /
libl cobol I cobopt. Directives can also be communicated
via the environment variable COBOPT, on the command line
with the -c flag, or embedded in a source file. Finally, there
are approximately twenty switches that affect the run-time
behavior of programs. These switches are communicated
through the environment variable COBSW.

/home/baz/linden/foo.cbl

$SET ANS85 decreasing order of priority
INDENTIFICATION DIVISION
PROGRAM-ID. FOO

setenv COBOPT U-C list"

/usr/lib/cobol/cobopt

-C nolist -m ixfile=netizfile

Figure 2.6. Differences Between Compiler Flags and Directives.

2.6 Sun COBOLTM 203

www.manaraa.com

2.7
References

SPARC Technology

Compiler Technology

2.A
Appendix A­
Optimization
Definitions

204

SPARCompiler Technology
Muchnick, Steven S. Optimizing Compilers for the SPARC

Architecture, in Sun Technology, Vol. 1, No.3, Summer 1988
Also in:

"The Sun Technology Papers", M. Hall and J. Barry
(eds), Springer-Verlag, 1990

"Reduced Instruction Set Computers" (Second Ed.),
Stallings (ed.), IEEE Computer Society Press, Los
Alamitos, CA, 1990

Muchnick, Steven S. Optimization in the SPARC Compilers,
in Procedures of the Sun Users Group Conference, Atlanta,
June 1991

Also to appear in:
Procedures of SUN USER '91, Birmingham, England,
September 1991

README (SUG publication), next issue

Garner, R. SPARC: Scalable Processor Architecture, in "The Sun
Technology Papers", M. Hall and J. Barry (eds), Springer-Ver­
lag, 1990

Aho,Alfred Y., Sethi, R. and Ullman J.D. Compilers: Principles,
Techniques, and Tools, Addison-Wesley, 1986

As used in compilers, optimization refers to methods that im­
prove the run-time performance of a compiled program, as
compared to one translated by entirely straightforward
methods. Optimization algorithms usually operate either on
an intermediate code form or on object code.

Most optimizations concentrate on reducing execution
time, but a few are specifically directed toward reducing the
space a program occupies. Occasionally these goals conflict,
so that, for example, a transformation that reduces execution
time may increase the size of the object code. This size in­
crease is rarely a problem because it is not usually very sig­
nificant and, in almost all cases, reducing execution time is
much more desirable than reducing the size of an object pro­
gram.

One of the goals of the SPARCompiler product family is
to produce the most highly optimized code possible. This is
balanced by providing command-line switches that engage
different levels of optimization to suit the needs of the phases
of the development cycle. The remainder of this section pro-

Chapter 2. SPARCompiler IM Compilation Technology

www.manaraa.com

vides definitions for the optimizations that are mentioned in
the body of this report:

• Aggregate Breaking-an optimization that allows the in­
dividual components of composite objects to be treated
as if they were scalars by other optimizations. This op­
timization is especially well-suited to work with copy
propagation, register allocation and inlining. By view­
ing some structure components as scalars, the optimizer
can avoid extraneous memory operations and can en­
able other optimizations that cannot be used effectively
on entire structures.

• Algebraic Address Expression Reorganization-systemati­
cally transforms address expressions and collects region
constants 1 to form simpler expressions from complex
ones. A general-purpose transformation engine itera­
tively applies rules from a transformation grammar un­
til no more simplification can be achieved.

• Automatic Inlining-A process whereby the code of a
procedure body is placed directly into the body of the
caller, in place of the call. This has several benefits:

°Call overhead is eliminated (this is usually a minor ef-
fect)

°Interprocedural optimizations are exposed (for exam­
ple, common subexpression elimination, dead code
elimination, and register allocation).

°In the current Sun implementation, the caller and the
callee must reside in the same text file. A variety of
sophisticated heuristics are employed to reduce the
probability of adverse performance effects due to code
size expansion. Entry points for the inline functions
are preserved, so they can be called from functions re­
siding in other files and from the debugger.

• Common Subexpression Elimination-saves expression
values and reuses them, instead of recomputing them.

• Complex Expression Expansion-complex expression ex­
pansion works by separating complex expressions into
subtrees for the real and imaginary parts of the complex
expression. By splitting complex expressions in this
manner, it is possible to increase the speed of complex
arithmetic because the separate parts of the complex ex-

1. Region constants are expressions that have the same value throughout
execution of some segment of a procedure, such as a loop.

2.A Appendix A-Optimization Definitions 205

www.manaraa.com

206

pressions reside in registers during function calls, in­
stead of in memory.

• Constant Folding-constant-valued expressions are eval­
uated by the compiler and the results are inserted into
the generated code.

• Constant Propagation-a technique that replaces refer­
ences to variables that are known to contain constant
values with the constants themselves. The primary ben­
efit of this optimization is that other optimizations such
as constant folding and algebraic simplification can re­
place runtime computations with those done at compile
time.

• Copy Propagation-copy operations that assign a simple
value to a variable are of interest to copy propagation if,
at runtime, the source of the assignment can be refer­
enced faster than its target. For each such copy, all uses
of the target that can be reached by this copy are re­
placed by the source, if the source is not redefined be­
tween the copy operation and its use.

• Cross Jumping-a technique that combines identical
code found both immediately before a branch instruc­
tion and immediately before the branch target. This re­
dundant code can be combined into one sequence.

• Dead Code Elimination-information is maintained by
the optimizer to track what code is reachable. An ex­
pression computation is dead if there is no execution
path along which the computation can reach any use of
the value it computes. A variable definition is dead if it
cannot reach any uses.

• Detection of Interesting Variables-a strategy to reduce
compilation time by concentrating optimization effort
on the parts of programs that are expected to yield the
largest improvement for the smallest amount of work.
By analyzing the types and patterns of variable referenc­
es, the optimizer determines which variables are more
likely to be candidates for optimization. These "inter­
esting" variables are then targeted for optimization.

• Elimination of Redundant Loads/Stores-As an example,
the load is redundant in the following case:

st %fn, [eq]
Id [eq], %fn

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

• Elimination of Unnecessary Jumps-For example:

jrnp a jrnp b

becomes

a: jrnp b a: jrnp b

• Induction-Variable Strength Reduction-replaces slower
operations (for example, multiplications) by faster ones
(for example, additions or shifts).

• Instruction Scheduling-fine-grained execution parallel­
ism allows several instructions to execute simulta­
neously, as long as they use distinct functional units.
Since both SPARCsystems' Floating Point Units (FPUs)
and the delay slots following branches and loads pro­
vide such parallelism, the postpass optimizers for these
systems rearrange instructions in the generated code to
take advantage of this parallelism.

• Leaf Routine Optimization-leaf routines (routines that
call no others) are comparatively common. If a leaf rou­
tine uses few registers and needs no local stack, it can be
entered and exited with the minimum possible over­
head by omitting the save and restore instructions
and correspondingly adjusting the register numbers
used in it. This saves cycles and also reduces the num­
ber of register windows employed.

• Loop-Invariant Code Motion-finds those computations
within a loop that yield the same results for each itera­
tion of the loop and moves them out of the loop.

• Loop Inversion-used to convert pre-test loops into post­
test loops. This optimization allows loops that have two
branches per iteration to be turned into loops that have
one branch per iteration.

• Loop Unrolling-replaces the body of a loop with several
copies of the body, adjusting the loop control code ac­
cordingly. This optimization reduces the run-time loop­
ing overhead by reducing the number of loop iterations
taken. More importantly, increasing the size of the loop
body also increases the effectiveness of instruction
scheduling.

• Optimized Block Moves-tight inline code is generated
for block moves when it is known that the source and
destination locations do not overlap.

2.A Appendix A-Optimization Definitions 207

www.manaraa.com

208

• Range Propagation for Elimination of Constraint Checking­
once a range check has been performed on an object, the
object is tracked so that redundant range checks are
eliminated. Related checks can also be eliminated, if, for
example, the range of one object is within the range of
another. Some null reference checks for pointer types
are also eliminated by range propagation.

• Register Allocation-decides which objects are worth
placing in registers, and which objects can share a reg­
ister with others within a region of code. For each can­
didate, the benefit is determined by the number of
machine cycles saved by allocating it to a register in­
stead of memory.

• Register Coalescing-minimizes the number of registers
required to compute a value. Using the fewest registers
for one computation ensures that as many as possible
are available for use in other computations.

• Tail Call Optimization-subroutine calls that are per­
formed immediately before the caller returns are called
tail calls. By placing a routine's res tore instruction in
the delay slot of the tail call, the called subroutine uses
the same register window that its caller used.

• Tail Recursion Elimination-converts some self-recursive
procedures into iterations. This typically saves register
window overflows (on calls) and underflows (on re­
turns) and it saves stack allocation, manipulation and
deallocation.

Chapter 2. SPARCompiler™ Compilation Technology

www.manaraa.com

CHAPTER 3
The SPARCworks™
Programming Environment

3.1
Introduction

SPARCworks™ is a set of six programming tools for use with
SPARCompilers. The SPARCworks programming environ­
ment speeds and simplifies the tasks software developers do
most often - edit and merge source code, compile programs,
debug programs, and tune program performance.

SPARCworks tools form part of an overall development
environment that includes SunOS™ programming utilities,
the DeskSet™ productivity tools (including File Manager
and Mail Tool), and the OpenWindowsTM Developer's Guide
for interactively building OPEN LOOK® graphical inter­
faces.

The SPARCworks programming environment consists of
the following six tools:

• SPARCworks Manager - for managing and coordinat­
ing other SPARCworks programming tools

• SourceBrowser - for statically analyzing source code
and program structure

• Debugger - for dynamically analyzing programs, ob­
serving behavior while the program runs, and collecting
information for performance profiling

• Analyzer - for tuning program performance, including
memory allocation

www.manaraa.com

Compatible
Compilers

3.2
SPARCworks
Manager

@)

(File 'VI)

m => ...

Debugger

• FileMerge - for merging source files and coordinating
source code changes

• MakeTool - for building programs and browsing
makefiles.

Most SPARCworks functions are available from the termi­
nal-mode command line, a fact important to users without
access to a Sun™ window environment. However, this sec­
tion discusses only the OPEN LOOK window interface to
SPARCworks tools.

The following SPARCompilers can be used with SPARC­
works tools:

• SPARCompiler C / ANSI C
• SPARCompiler C++
• SPARCompiler FORTRAN
• SPARCompiler Pascal.

Other Sun compilers, such as SPARCompiler Ada and
SPARCompiler COBOL, provide their own programming
environments.

SPARCworks Manager provides an easy-to-use, unified
means to start SPARCworks tools and control the program­
ming environment. Figure 3.1 shows the SPARCworks Man­
ager window with SPARCworks tool icons displayed. Each
tool can be started by double-clicking on its icon or by drag­
ging the icon onto the screen workspace. A tool that is started
from the SPARCworks Manager is thereafter associated with
that instance of SPARCworks Manager, and can be controlled
as part of a management session.

SPA Reworks Manager -,

(View 'VI) (Edit 'VI) (properties 'VI) (sess ion 'VI) D
[~ourc1 9 ri Ii] • ~ ~~

SBrowser FileMerge Analyzer MakeTool Application

Figure 3.1. Sparcworks Manager window.

210

In addition to managing the other five standard SPARC­
works tools, SPARCworks Manager can also control custom

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

3.3
SourceBrowser

3.3 SourceBrowser

applications written by users or by third-party developers.
When integrated with SPARCworks and executed under
SPARCworks Manager, the standard SPARCworks tools and
custom applications combine to provide you with the follow­
ing advantages:

• Drag-and-drop execution - You can drag an on-screen
deskset object (a file icon, for example) with the mouse
pointer and drop it on a SPARCworks tool, which rec­
ognizes whether or not the object can be loaded or oth­
erwise acted upon.

• Session control - You can group development activi­
ties into logical management sessions. Multiple sessions
can proceed simultaneously, each controlled by its own
Tool Manager.

• Workspace organization - Tool Manager helps you
make the best use of on-screen workspace. SPARC­
works tools associated with a management session can
be closed to a single icon.

• Central control- The SPARCworks Manager can set
environment variables and the working directory for all
SPARCworks tools used in a session.

SourceBrowser is the SPARCworks tool for static program
analysis. Static analysis of a compiled program involves ex­
amination of its code. The program does not need to be exe­
cuting during static analysis. Searching through high-level
source code with a text editor is a primitive form of static
analysis.

SourceBrowser can perform II queries" on source code
(analogous to searching in a text editor) that are constrained
by the semantics of the source language it is browsing and by
other, user-imposed constraints. In addition, SourceBrowser
maintains a list of previous queries so that it can return to
view earlier results, eliminating the performance penalty
that would be required to repeat the query.

When SPARCompilers execute with the - sb command
option, they create a database that Source Browser uses to
speed searches, making it much faster at matching than sim­
ple text editors. SPARCompilers also inform SourceBrowser
of exactly which source files were compiled to produce an
executable or library so that they can be loaded and browsed
automatically. By default, SourceBrowser queries all source
files, but you can limit the query to focus on any subset of

211

www.manaraa.com

SourceBrowser
Window

SourceBrowser
Capabilities
Finds Symbols and Strings
in Source

212

source files. SourceBrowser considers all header files to be
source files during queries.

SourceBrowser relies on SPARCompilers to generate the
list of symbols it uses. Unlike the SPARCworks Debugger,
which uses symbols embedded in the compiled executable,
Source Browser uses its own database of symbols that is in­
dependent of the executable. This arrangement has two ben­
efits: it speeds Source Browser search activities and
minimizes the amount of information that the compiler must
include in executables to enable SourceBrowser to do its
work.

Source Browser operates by responding to user queries that
instruct it to find all occurrences of a specified identifier,
string constant, or search pattern.

Figure 3.2 shows the SourceBrowser base window. In ad­
dition to the standard OPEN LOOK window header, the win­
dow contains a control area filled with buttons, button
menus, and a field where you enter text before instructing
Source Browser to search for matches. The control area also
displays a message that reports on the number of matches
that result from a query.

Below the control area is a scrollable match pane that dis­
plays all matches found by the current query. Below the
match pane is the source pane, which displays the contents
of the source file in which a match was made. Text above the
source pane lists the current working directory, the name of
the file being displayed, and the line numbers of the first and
last lines being displayed.

Beneath the source pane is a message area that displays
the type and value that is the subject of the current query.

This section highlights the features and capabilities of Sour­
ceBrowser.

In a SourceBrowser session, users issue queries that instruct
SourceBrowser to find all occurrences of a specified symbol,
string constant, identifier, or search pattern. In response,
SourceBrowser displays matches (occurrences of the text that
Source Browser was ordered to find) with their surrounding
source code.

SourceBrowser maintains a list of all queries that were
conducted during a session. This feature makes it easy to is­
sue a query, view the resulting matches, conduct another

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

Control
Area

Match
Pane

Source
Pane

Message
Pane

[
[

~ Source Browser

(View v) ~(Props 17) (prev 17)(Next 17) (Graph 17) (ClassBrowse ...)

~ (Focus 17) (Query) ~ main <2>.

Matches: Only one match
,... main.cc·. hne 10: [main] mainCint argc. char **argv. char **envp) =

~
I =

o irectory: ~ /Iocal-opt/swdemo/Blocks
File: mai n.cc Lines: 9-25

=
-..ainCint argc. char ··argv. char ··envp)

{the_hand = new handC"Halld". pointC1. world_height - world_y_offset - 5));
the_tabl e = new tabl eC"Tabl e". worl d_wi dth. O. poi ntCO. 0));

i nt x = 0;
blocks [0] = the_table;
blocksl1] = new brickC"B1". 2. 2. pointCx. 0). the_table); x += 2;
blocks[2] = new brickC"B2". 2. 2. pointCx. 0). the_table); x += 2;
blocks[3] = new brickC"B3". 4. 4. pointCx. 0). the_table); x += 4;
blocks[4] = new brickC"B4". 2. 2. pointCx. 0). the_table); x += 2;
blocks[5] = new wedgeC"W5". 2. 4. pointCx. 0). the_table); x += 2;
blocks[S] • new brickC"BS". 4. 2. pointCx. 0). the_table); x += 4;
blocks[7] = new wedgeC"W7". 2. 2. pointCx. 0). the_table); x += 2;
blocks[S] = new ball C"LS". 2. 2. pointCx. 0). the_table); x += 2;

make_wi ndow Cargc. argv. envp); }

..
;, =

All mentions of the symbol

Figure 3.2. SourceBrowser base window.

Matches Wildcards and
Regular Expressions

Performs Semantic Queries

3.3 SourceBrowser

query, and then return to the original query with a minimum
number of commands.

In addition to literal text, query patterns can contain wild­
cards, as used in shell-style patterns, or regular expressions, as
used in vi, grep, and other SunOS editors and utilities. The
Source Browser Property Window lets you specify which
convention to use.

Source Browser can respond to queries that filter matches ac­
cording to the semantics of the source language. For exam­
ple, a developer using the C language could issue a very
specific query such as "Show all occurrences of the variable
age when age is used as a structure field name." The search
can be further focused on specific items of certain classes of
code, such as files or functions.

213

www.manaraa.com

Adapts to Many
Languages

Provides Text Editor for
Source

Handles Large
Applications

Produces Call and Class
Graphs

Class Browser

214

Source Browser has no built-in, architectural affinity for any
specific language. Instead, Source Browser obtains informa­
tion about each supported language by reading a configura­
tion file. The configuration file can be expanded to
incorporate additional languages as new compilers are inte­
grated with SourceBrowser.

Users can edit source directly in the text pane. The text pane
uses Text Editor commands that are the same as those in
other OPEN LOOK applications such as MailTool. Files un­
der the control of Source Code Control System can be
checked out directly from a menu in the text pane.

The first time Source Browser runs a query it creates an index
file for use in subsequent queries. The index file allows Sour­
ceBrowser to maintain a high level of efficiency regardless of
the amount of code it is browsing.

Source Browser also includes several features specially de­
signed to improve performance while browsing large
amounts of code. In one experiment, all of /usr / src for the
SunOS was compiled for browsing with SourceBrowser. The
resulting SourceBrowser database was between 40 and 50
Mbytes. Even with such a large database, SourceBrowser was
able to respond to queries in one or two seconds after it had
created its index file.

SourceBrowser can produce function call graphs for proce­
dural languages and class graphs for the C++ object-oriented
language. Call and class graphs are valuable overviews of
function and object relationships, especially for large pro­
grams.

Simple call and class graphs are shown in Figure 3.3. The
graphs show relationships among functions and classes for
simple programs. Horizontal and vertical scroll bars are pro­
vided for viewing larger graphs.

In addition to the Class Grapher, SourceBrowser provides an­
other tool to help understand how SPARCompiler C++
classes are defined and used. Class Browser, activated from
SourceBrowser, helps you effectively browse through C++
source code and libraries. The Class Browser base window is
shown in Figure 3.4.

The Class Browser provides the following capabilities:

• List and select from available classes - view an alpha­
beticallist of available classes and select one from the
list to display information.

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

Class Grapher

(Expandv) (Query) (Source) (CleanUp v) (Props,~)

(Add Node:)

~ ball eOE.pond 0) (View 0) ~ (Qu.ry_.S)O~::::::;·I"C:~~:~;h.r
block wedge

1 ~(A~d~d~No~de~:)~===================-__________________________ -,
load_bearing_block < Ir

OGIlIJ

main

xv_eru_te

xv_get

notify_'itart

x",_set

-~€§:=:;~;;:2: 05tream::operator«
ostrtam::operoltor «

notify _seLs igoal_func

notify_lnterpose_e",enLfullC

x"'_r(1W

block::button

'itr(mp

'itrr(hr

x", _lnlt

block:name

I moIT.TIt==================================~oo
Cr'3.ph; 32 node'i, 47 it dges

Figure 3.3. SourceBrowser call and class graphs.

3.3SourceBrowser

• Navigate from class to class -- easily follow inheritance
links to browse information.

• Display class data and member functions -- view the
data members and member functions of a specified
class.

• Show access protection of class members -- display ac­
cess restrictions along with data members and member
functions to reveal valid class-defined interfaces.

• Identify friend classes -- discover the friend classes
and functions of a specified class.

• Display the source of member classes -- select a class
and display its source code.

• Issue queries for class usage -- use the SourceBrowser
query facility to find usages of a specified class.

• Interact with Class Grapher -- select a node in Class
Grapher and display class information in Class Browser.

215

www.manaraa.com

@J SPARCworks : Class Brows er

~ (Craph 9) (Query".) (source".) ~
Base Classes: @J Derived Classes: @J Frie nd Clas ses: @J

~ @J RP_Draw ..

Data Members: Display Options:

pnvate : =
int wi dth;

~
0 Inherited Memoe",

Ori ent ori entati on ;
~ Private Members

protected :
Vertices 'yertices;

~ Protected Members Sides 'si des

publ ic : ~ Puol ic Memo.rs
Naae 'naae~

0 Friend Functions

Member Fundi" ns:

private : =
boo 1 ean yal i dHode (Node 'node) ;

~ yoid reloveSpi ral 0 ;

protected :

I
yi r tual yoi d a djustVerti ces 0 ;

public:
yoid set Wi dt h (const i nt yalue).; =

Figure 3.4. ClassBrowser base window.

Using SourceBrowser You initiate a Source Browser query in one of two ways:

Filtering To Obtain Useful
Matches

216

• Select a text string anywhere on the screen and click the
Query button

• Type a string in the text entry field next to the Action
button and press the Return key.

The first method makes use of the selection service and is
especially useful when Source Browser is used with other
OPEN LOOK programs such as the SPARCworks Debugger.

The number of matches the SourceBrowser can handle is lim­
ited only by the available swap space. For a symbol like
NULL, a query might produce such a large number of
matches that the information present is not useful. Source­
Browser filter capabilities can be used to reduce the number
of matches.

You can instruct Source Browser to restrict its search on the
basis of semantic information specific to a particular lan­
guage. For example, choosing Filter from the View menu pro­
duces a pop-up window (Figure 3.5) in which you can specify
that the SourceBrowser search only for C-language declara­
tions of the symbol.

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

Language-Specific
Filtering

3.3 SourceBrowser

Figure 3.5. Setting a filter for C language declarations .

. ~
Se lecte d M atc h

Current Match

Focus E>

Version

All Matches All Declarations

Declarations Variables

Re ferences Functions

cpp Flow Control Typedefs

Strings Type Tags

Pragmas labels

Crep Constants

cpp Symbo ls

filter is: I Active I Not Active I
@B ~

The choices on the Filter pop-up window are language-spe­
cific and change automatically with the languages that have
been compiled into the SourceBrowser database. The choices
shown in Figure 3.6 are for FORTRAN.

!9 So uree Browser; filter

All Matches All Declarations

Declarations Variables

References Programs

cpp Flow Control Functions

Stri ngs Volatiles

Grep Save Items

Namelist Items

Intrinsics

Implicits

Equivalences

Com mon Bl ocks

Block Data labels

Type Tags

labels

Constants

cpp Symbols

Filter is: I Active I Not A ctive I
~ (§D

Figure 3.6. Filter choices for the FORTRAN language.

217

www.manaraa.com

Focusing

a;a
. -{l::Q

Selected Match

C urre nt Match

filter .. ,

Vers Ion

. -{l::Q

When a project requires that object files be compiled from
sources written in different languages, the linker (ld) records
this fact in the Source Browser database at link time. The Fil­
ter pop-up window shows the union of all semantic con­
structs for the languages that were used to produce the final
executable.

In addition to filtering, users can restrict SourceBrowser to
query only certain sections of the source: a specific language,
function, or set of source files, for example. This restriction is
known as focusing.

In Figure 3.7, SourceBrowser is being instructed to focus
its queries on the function hello and the source file hel­
lo.c.

tmal
, -{l::Q

Selected Match

Current Match

fi lter .. , .~

Program ...
Vers ion Library ... 19 Focusing on Function

file ... (Action: 9) to

Macro. ..
.:papiN,_

language .. ,

I",he! 10 =
_aln

~ world

Class .. , I
~

Module .. ,

Directory .. , (Actiyate 9) (Deactin te ,,)

19 Focusing on File
Program .. , (Action: 9) to
Lib rary .. , = .",. I"'hel lo. c

lusr lincl ude/stdi o. h

~ Macro .. ,

function .. ,

lang uage .. , I
Class .. , =
Module .. ,

Directory .. ,
(Actiyate ,,) (Deactiyate ,,)

2 entries, 1 active,

Figure 3.7. Focusing a Query.

218

Any number of items in the lists can be activated; Source­
Browser thereafter limits its queries to source that is the
union of all active items from all Focus lists. With the settings
shown in Figure 3.7, a search for the NULL symbol would

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

Matching Strings

Checking Out Files from
SCCS

3.4
Debugger

Debugger Features

3.4 Debugger

match only text that is either in the function he 11 0 or the file
hello.c (or both).

The information stored in the SourceBrowser database is de­
termined by the compiler that generates the database­
SPARCompilers have been designed to store strings and
symbols. Strings are stored along with the quotation marks
that are used in the language, which identifies them as strings
and enables SourceBrowser to perform queries on them (to
limit a query to strings only, set a filter for Strings).

Queries for strings are very useful for debugging an appli­
cation that has printed a message (typically an error mes­
sage). A user can search for a string in the message and find
the place in source where the message is printed. In conjunc­
tion with Debugger, the user can then determine the exact
circumstance that caused the message to be printed and rap­
idly uncover the source of the error.

The source pane in SourceBrowser can be enabled as an ed­
iting window, with features identical to OPEN LOOK Text
Edit. A pop-up menu in the source pane enables editing (Fig­
ure 3.8). If the source is controlled by the Source Code Control
System (SCCS), the same menu can check out the source file
for editing. This feature is also found in the Debugger source
window - source files can be checked out from SCCS and
edited in either window.

The SPARCworks Debugger dynamically analyzes a pro­
gram, letting you observe its behavior while it is running.
Debugger gives you complete control of program execution
and simultaneously collects performance data for later use
with SPARCworks Analyzer. From within Debugger you can
identify a problem, edit source code, rebuild the program,
and then continue dynamic analysis.

In addition to the mouse-selectable functions of the OPEN
LOOK interface (which you can customize to suit your
needs), Debugger provides a pane in which you can type
commands directly to the command line. The algorithms un­
derlying Debugger are those of dbx, a mature dynamic ana­
lyzer descended from Berkeley 4.2 BSD.

The following list summarizes the activities you can perform
with Debugger and gives an overview of its many features.

219

www.manaraa.com

So urce Browser

(View 'i7) (Edit 'i7) (Props 'i7) (Prev 'i7) (Next 'i7) (Graph 'i7) (ClassBrowse".)

(F ilte r 'i7) (FOCUS 'i7) (Query)@) main <2>
~~-------------------------------

Matches: Only one match

"main.cc", line 10 : [mai n] main(i nt argc, char argv, char envp)

~
I L-__ ~~

o-C=:O
Query

View

Prev ious Match

Next Match

Graph

C lassBrowse".

Filter

Focus

Text Pane Menu t>

demo/Blocks

.--.~

Remove Current Query
rl d_height - wor l d_y_offset - 5

dth , 0, pointCD. 0));

o-C=:O
Enable Edit ing Source Win dow

Check Out Then Enable Editing

Figure 3.8. Checking out a file for editing in the source pane.

220

• Display source code - the debugger displays source
code corresponding to the machine code being execut­
ed.

• Single step through the program by machine instruc­
tions or by source lines. You can decide to step into pro­
cedures or over them.

• Set breakpoints at source line, address, exception, in­
struction count, procedure, or function. You can also set
conditional breakpoints.

• Set watchpoints for variables, functions, source lines, or
expressions you enter at the command line. Execute a
command or evaluate an expression when the value of
the watchpoint changes. You can set conditional watch­
points and watchpoints that focus on a particular func­
tion or procedure.

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

3.4 Debugger

• Analyze low-level code - the debugger analyzes as­
sembly language code as well as code written in high­
level languages.

• Navigate the call stack - move up and down the call
stack.

• Modify data - edit code at source level; change the val­
ues of variables at a low level.

• Handle overloaded names - when variables from dif­
ferent functions or procedures have the same name, you
can differentiate each name by fully qualifying it with
the name of the function (and source file, if necessary)
in which it occurs.

• Run subprograms.
• Evaluate operators and native language expressions.
• Analyze live processes - attach Debugger to an execut­

ing program such as a daemon, debug the process, and
then detach Debugger. Programs do not need to run as
children of Debugger in order for you to analyze them.

• Handle signals - intercept signals and act on them; ig­
nore other signals that might halt execution.

• Analyze dynamically linked shared libraries - dy­
namically linked shared libraries that have been speci­
fied during linking can be analyzed with Debugger.

• Analyze multiple languages - Debugger works with
the same SPARCompilers that as SourceBrowser: at this
writing, they are C, C++, FORTRAN, and Pascal.

• Load symbol-table information automatically - load
compiled symbol table information on demand. Makes
starting Debugger with a large program much faster.

• Analyze optimized code - code compiled with the - Og
option can be analyzed.

• List command history - a history command provides
most of the same functionality as the C-shell history
command.

• Step out of functions with a single command - after
you have stepped into a function, a single command lets
you quickly return to the calling function.

• Monitor the value of expressions and variables - a
Data Display pop-up window monitors the values of ex­
pressions and variables, including the values of nested
pointers.

• Evaluate FORTRAN array slices - print the values of
portions of FORTRAN arrays.

221

www.manaraa.com

Debugger Interface

Data Display
Window

222

• Save, restore, and replay sequences of commands -
save analysis sessions in the form of command sequenc­
es. The sequence can then be replayed to restore the
analysis session, or a subset of the sequence can be re­
played for an "undo" effect (on programs that are deter­
minate).

• Check out source from SCCS -like the source pane in
Source Browser, the source pane in Debugger can be en­
abled as an OPEN LOOK editing window. If the source
file is controlled by sees, Debugger can check out the
file.

Figure 3.9 shows the Debugger base window. Beneath the
standard OPEN LOOK window header are the following el­
ements:

• Button menu control panel - contains button menus
that provide access to the most important and common­
ly used debugging commands, as well as an assortment
of debugging utility commands and property window
controls.

Beneath the buttons, the window displays current pro­
gram location (by file and function) and the full path name
of the source code file being displayed.

• Source pane - usually displays the current locus of ex­
ecution in the source code, indicated by a bold arrow to
the left of the source line. An outlined arrow indicates
an active call on the stack. Stop sign glyphs to the left of
source lines indicate where breakpoints are set. When
the program is executing in single steps, the source text
view in the pane is updated to keep up with the chang­
ing locus of execution.

• Command button control area - buttons in this area
provide easy access to the most commonly used items
from the button menus at the top of the window. Users
can customize this area by adding buttons to execute
any dbx command.

• Command pane - you can enter dbx commands from
the keyboard in this pane. The pane echoes the com­
mands generated by control panel buttons. Messages re­
turned by dbx also appear in this window.

The Data Display window (Figure 3.10) monitors the values
of expressions and variables whenever execution halts.

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

Control Panel
Menu Button [

Source
Pane

Command Button[
Control Area

Command
Pane [

~ SPARCworks Debugger - animate

(Program 17) (Breakpoint 17) (Exe<ution 17) (Stack 17) (Data 17) (props 17) ('::",;t,)", ';;)
Stopped in File: animate,(Function: Line: 0

File Disp layed: III rib b les/darro/debug_ man uals/exam pies/an i mate,c Lines: 45-64

voi d start_stop(), adjusLspeed (), change_gl yph(); =
exte rn voi d exitO;

,*xv_init(XV_INIT_ARGCPTR_ARGV, &argc, argv, NULL);

frame = (F rame)xv_c reate (XV_NU LL, FRAME,

~
FRAME_LABEl, argv [0) ,
FRAME_SHOI'UOOTER, TRUE,
NUL L);

panel = (Panellxv_create(frame, PANEL,
PANE L_LAVOUT, PANEL_VERTICAL,
NULL) ;

xv_create(panel, PANEL_BUDON,
PANE L_LABEL_STRING, "Quit" ,
PANE L_NOTI FLPROC, exit,
NULL) ;

xv_create(panel, PANELSLIDER,
PANEl_LABE L_STRING, "Mill i secs Between Frames",
PANE L_ VALUE, 0, =

(Stop At) ~ ~ ~ (Continue) ~ ~ ~ ~
(dbxtoo 1) debug ani mate =
Readi ng symbol i c info rmati on fo rani m'ate I Read 908 symbols

(dbxtoo 1) •

~
D

Figure 3.9. SPARCworks Debugger window.

(!,I SPARCworks Debugger: Data Display

(Display) (Undisplay) Expression: i

'animate'change_glyph'value = 1 = I

~ I;=;,

Figure 3.10. Data Display window.

Collector Window

3.4 Debugger

In addition to its duties as a dynamic analyzer, the Debugger
also collects data for use with the Analyzer performance-tun­
ing tool.

The Debugger Collector window sets data collection pa­
rameters. Then, as the application executes under Debugger,
the Collector gathers performance and test coverage data
and writes the data to a file. The execution run is called an
experiment; the file is referred to as an experiment record. Fig­
ure 3.11 shows the default settings of the Collector when it is
first activated.

223

www.manaraa.com

File
Parameters

Type of
Sampling

Data Collection
Parameters

Profiling
Timer

Figure 3.11. Collector Window.

224

SPARCworks - Collector

Directory: lusrlsrc --------------------------
Experiment: ..:.de.;:.:m.:..:.o.:.....-'-.1.c;..e_r __________________ _

Sam p Ii n9: I Conti n uous I Man ual I None I
Interval: _, __ 6!J seconds

Address Space: I Working Set I None I
Profiling: I PC I PC and Stack I None I

The Collector window is divided into four main areas:

• File parameters - in this area you name the directory
and file name for the experiment record.

• Type of sampling - in this area you choose the type of
sampling for the experiment. Each sample contains in­
formation on the target program, collected over a spec­
ified period of time. Continuous sampling is useful for
initially identifying problem areas. As you focus in on a
problem, you may want to adjust the sampling interval
or trigger manual sampling at a specific point in the pro­
gram as it executes under control of the Debugger.

• Data collection parameters - In this area you specify
the types of data to collect during the experiment.

The Collector always accumulates data for an overview
display of the experiment. Additional data collection param­
eters are:

o Working Set - causes the Collector to accumulate
memory use data.

o PC - causes the Collector to accumulate program
counter profiling data. This data identifies the func­
tions in which the program spends the most time.

o PC and Stack - causes the Collector to accumulate re­
turn addresses on the call stack. This data is useful for
profiling applications that have a hierarchical, modu-

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

3.5
Using
SourceBrowser
with Debugger

A Brief Example

lar design and for complex applications that make
heavy use of standard library files.

• Profiling timer - specifies how often data is to be col­
lected.

Section 3.6 describes how the collected data is analyzed.

Because Source Browser and Debugger use the selection ser­
vice, they are integrated with each other and with other
OPEN LOOK applications.

When you run SourceBrowser along with Debugger you
combine the benefits of static and dynamic analysis. For ex­
ample:

• When you stop at a function in Debugger, you can then
go to the SourceBrowser to find how the function is de­
fined. You can also find all the other places where it is
used.

• You can use SourceBrowser to search for a variable. If
the search finds the variable in an interesting line of
source code, you can move to Debugger, set a break­
point, and examine the values taken on by the variable
in the statement during execution.

To use SourceBrowser with Debugger, you must first compile
your program with the appropriate options: -g to instrument
the executable for Debugger (and, incidentally, for SPARC­
works Analyzer), and - sb to create the SourceBrowser data­
base. For this example, the user compiles the source file
hello.c with the command

cc -g -sb hello.c

In this example, assume that debugging has started with
Debugger. During dynamic analysis, the user has discovered
a bug somewhere near line 33 in the file hello.c, and sus­
pects that the bug involves the variable f i 1 e. The user wants
to know how f i 1 e is defined and where else it is used-a job
for Source Browser. Before moving to SourceBrowser, the
user selects the variable f i 1 e in Debugger, as shown in Fig­
ure 3.12.

The user now moves to Source Browser and issues a query
that instructs it to find file. When the user clicks on the
Query button, the selection service informs SourceBrowser
that f i 1 e is the object of the query (f i 1 e has been selected
in Debugger). The user steps through the resulting matches

3.5 Using SourceBrowser with Debugger 225

www.manaraa.com

-@) SPAR Cworks Debugger - hello

(Program ,,) (Breakpoint v) (Exec ution ,,) (Stack,,) (Data v) ~ .: .:",:\.)1\1 '")

Sto p ped in Fi Ie: animate.c Function: Line: 0

Fil e Displayed: (!) !examples/hello.c Lines: 20-38

=
I

I I

for (; tiDeS) 0; tioes--) {
hell o(stdout) ;

~ .orl d(stdout);
}

}

static void
hell o(fil e)

FILE °fi 1 e;
{

! (void)fprintf<m. 'Hello "J ;
I

stati (voi d
.orld(fil e)

FILE °fil e; =
(SIOPAI) ~ (Clear) ~ (Continue) ~ ~ (Printo) @§)
(dbxlOOI) stop at "/usr!export/home/sponge3/rickp/SW/demo/hello.c·:30 =
(2) slop at "/usr/export/home!sponge3/rickp/SW/demo/hello.c·:33 I (dbx lOOI).

~ =

Figure 3.12. Selecting a variable in Debugger.

3.6
Analyzer

226

in SourceBrowser by repeatedly pushing the Next button, ex­
amining the places where f i 1 e is used in the program (fig­
ure 3.13).

To continue the debugging process, the user would move
back and forth between Source Browser and Debugger, using
SourceBrowser to find interesting instances of source text
and Debugger to display the values of variables and pointers
while the program executes.

After you have successfully compiled a program and elimi­
nated its major bugs, you will want to evaluate its perfor­
mance. The SPARCworks Analyzer measures and displays
an application's performance profile, suggesting ways to im-
prove performance.

Any program that has been compiled for debugging is ca­
pable of generating data for the Analyzer. The Debugger col­
lects performance data while the program runs under
Debugger control. The performance data is placed in a file
that the Analyzer subsequently examines and presents in a
variety of graphic and text displays.

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

@) SourceBrowser

(View v)~(props v) ~~ ~ (ClassBrowse ...)

~ (FOCUS v)(Query)@) file

Matches: 2 matches for this source line.

.... :'hel)o.c". line 30: [hello] hello(file) =
"hello.c". line 31: [hello] FILE "file:

~ "hello.c". line 37: [world] world(file)
"hello.c". line 38: [world] FILE 'file;

=
Directorv: @) Ihome/s~onge3/rickp/SW/demo
File: hello.c Lines: 29-41

stat, c yoi d =
~ellO(I!f)

FILE 'fil e;
{

(yoi d)fpri ntf(fil e. "Hell 0 ");
l

stati c yoi d
"'worl d(fi 1 e)

"'FIlE 'fil e;
{

(yoi d)fpri ntf(fil e. "worl d\n"):
l

~ =

Figure 3.13. Querying for the selected variable in Source Browser.

Features

Collecting
Experiment Data

3.6 Analyzer

The Analyzer eliminates the need to compile and link an ap­
plication with special data collection instrumentation - any
program that has been instrumented for debugging can be
analyzed. Moreover, the Analyzer simplifies and enhances
the task of collecting data: you can collect a variety of perfor­
mance data types, and you can control the data collection
process while an application is running.

By letting you focus on the areas where performance prob­
lems occur, the Analyzer easily tests your hypotheses about
a program's behavior.

After you have tuned your program, the Analyzer assists
you in rebuilding it. As a further help in rebuilding your pro­
gram with improved performance, the Analyzer identifies
improved ordering for loading functions into the program's
address space. The Analyzer then rebuilds the program by
passing the new ordering to the SunOS linker and produces
an executable with reduced working set size.

Experiment data is collected by the Debugger, as described
in Section 3.4 on the "collector window." Following collec­
tion, the data is written to a file called the experiment record.

227

www.manaraa.com

AnaLyzing
Experiment Data

Analyzer Features and
Displays

228

The Analyzer examines the performance data that has been
collected in the experiment record and displays its results in
a variety of graphic and text formats.

The performance data that you can examine in the Analyzer
includes:

• User time - the amount of time spent executing pro­
gram instructions.

• Fault time - the time required to service fault-driven
memory activities, classified into text and data page
faults.

• 1/0 Time - time the operating system spent waiting on
I/O (input/ output) operations, such as writing to a disk
or tape.

• System Time - the time the operating system spent ex­
ecuting system calls.

• Trap time - time spent in executing traps (automatic
exceptions or memory faults).

• Lock wait time - time spent waiting for lightweight
process locks.

• Sleep time - time the program spent sleeping.
• Suspend time - time spent suspended (includes time

spent in debugger during breakpoints).
• Idle time - time spent waiting to run while system was

busy.
• Function Sizes - the sizes of functions in the program.
• Module Sizes - the sizes of modules in the program.
• Segment Sizes - the sizes of segments in the program.
• Memory Usage - memory page reference and modifi­

cation data. Memory pages are characterized in the fol­
lowing ways:

o Modified -a page that is written on is identified as a
modified page. Modified pages show pages that are
not only modified, but are also referenced.

o Referenced - a page that is executed from or read
from a page.

o Mapped - a page that is not modified but for which
the system has allocated a mapping. The mapping as­
signs a virtual page to a physical page.

o Unmapped - a page for which the system has not des­
ignated a mapping.

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

• Resource Usage - information about the system re­
sources that are used by the program, including major
and minor page faults, process swaps, number of input
and output blocks, number of messages sent and re­
ceived, number of signals handled, number of volun­
tary and involuntary context switches, number of
system calls, number of characters of I/O, and number
of working set memory pages.

The Analyzer provides four displays in which to view and
organize the performance data: Overview, Histogram, Pages,
and Statistics.

~ ~ ~ (Create Mapllle, ..) Data: @) Process Times

3% other

~I·········f fl I 1 I ,j········f f .. · fl .. f······ .. -I ,I
o 2 4 8 9 , 3 '5 16 20 21 22 25 29 32 33

Display: @) Overview Unit 0
Samples:.;..., --=3:a? ___________ _ ~~~!!!!!~I) % 01 experiment

(, 100

Figure 3.14. Oerview display.

3.6 Analyzer

Overview Display. Figure 3.14 shows the Overview dis­
play, which is automatically displayed after an experiment is
loaded. Data for the Overview display is always accumu­
lated when the Debugger Collector has been activated, so the
Overview display is always available in the Analyzer. The
Overview display is useful for conducting the initial exami­
nation of program performance. Each column in the display
represents a single sample of experiment data. The columns

229

www.manaraa.com

230

can be displayed in uniform widths or in widths propor­
tional to the duration of each sample. The Overview display
can show, in a pop-up window, more detailed performance
data specific to a sample you have selected (see Figure 3.15) .

• -i);lI Sample Properties

Samples: ..:..;10'--____ _

Start Time: 21.000

End Time: 22.000

D uratio n (sec): 1.000

Process Ti mes (sec):
User: 0.194 (19.4%)

Syste m: 0.193 (19.3%)
Trap: 0.000 (0.0%)

Text Fault: 0.446 (44.6%)
Data Fault: 0.000 (0.0%)

I/O: 0.000 (0.0%)
lock Wait: 0.000 (0.0%)

Sleep: 0.000 (0.0%)
Sus pe nd: 0.000 (0.0%)

Idle: 0.167 (16.7%)

Parameters:

Figure 3.15. Selection properties pop-up window ..

Histogram Display. The Histogram display provides an­
other overall view of application performance, and is consid­
ered by many users to be the most useful Analyzer display.
The histogram quickly reveals the functions in which the ap­
plication is spending most user time. After viewing the data
in the Analyzer, you may decide to tune the program so that
it calls those functions less often, or you may want to rewrite
the functions themselves so that they execute more quickly.

For display and analysiS purposes, the Analyzer dissects
the application in one of three ways: according to function,
module, or segment:

• Function - Function is the default histogram display.
This display identifies the functions in which the run­
ning program spent most of its time during the experi­
ment. These functions are prime candidates for tuning
performance.

• Module - The Module histogram display shows a high­
er level of data aggregation than the function histogram.
The module histogram is useful when an application is
made up of such a large number of functions that you

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

@) An a lyzer - demo.l .er

~~(P(oPSV) (Create M apfi Ie .. .) Data: @) User Time

=
seconds ~ 0.0008 er text term
0.0007 er wks_term
0.0007 er _f illaddr
0.0006 _e,-map
0.0005 _1I_parse_cstri n9
0.0005 _Iex_init
0.0004 _er _run
0.0004 _main
0.0004 _er _file_create
0.0004 _er _function
0.0004 _er _username
0.0003 _er segment
0.0003 _lax cmp
0.0003 ar workset seg
0.0003 ar prof term
0.0003 er ovw term
0.0003 ar hostname
0.0002 _er _os =

OrIDIJ 0
Display: @) Histogram Unit: I Function I Module I Segment I
Sam pies; 1-3?,. I ,) % of experiment

0
, ,

100

Figure 3.16. Histogram display.

3.6 Analyzer

cannot easily understand performance behavior from
viewing a function histogram.

Modules are units of executable code that correspond to
individual source files. This division of the program is sensi­
ble because programming practice usually groups related
functions into separate source files.

• Segment - The Segment histogram display shows yet
a higher level of data aggregation. Typical programs are
divided into two to eight segments. The program itself
is one segment; other segments result when the program
dynamically links to shared libraries during an experi­
ment.

The segment level of data aggregation results in a very
coarse performance view. The view is useful, however, be­
cause you can easily see how much of your application's ex­
ecution time is spent in the code of a shared library. If a great
deal of time is spent in libraries, you may be forced to limit
your performance tuning efforts to calling library functions

231

www.manaraa.com

less often; if little time is spent in libraries, consider improv­
ing the performance of your own functions.

You can display histogram data sorted either alphabeti­
cally or numerically. To find a specific function, module, or
segment, you can use the scroll bars provided and search vi­
sually, or use the Find feature to search for text strings in a
name.

Pages Display. The Pages display shows the memory us­
age of process text address space on a memory-page or seg­
ment basis (see Figure 3.17).

Analyzer - demo.1.er

~ (View.,) ~ (Create Map f l le",) Data; ® Working Se t

~==~~==~~==~~======~~--~=---~--'=r---------' I
0001 __ 00

0002 __ 00

0003 __ 00

0004 __ 00

0600 __ 00

060 1 __ 00

~ Legend

~ III Modi f ied

Re fere need

Mapped

121 Unmapped

1~~=======================nD= ID~ L-________ ~

Display; ® Ad dress Spa<e Unit; I Page I Seg ment I
Sam p les;""J-=-3""2.'--____________________ __ ~~~~;p) % of experime nt o 100

Figure 3.17. Pages display.

232

SPARe systems use pages that occupy either 4 or 8 Mbytes
of memory. The Analyzer categorizes these pages into four
classes:

• Modified - a modified page is written to in the course
of program execution.

• Referenced - a referenced page is read from during ex­
ecution, but not written to.

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

~

• Mapped - a mapped page is not modified during pro­
gram execution, but the system has nontheless allocated
a mapping for it. The mapping assigns a virtual page to
a physical page of memory.

• Unmapped - an unmapped page has not been designat­
ed a mapping by the system.

The Pages display helps you identify memory that is most
valuable to the application (modified and referenced pages)
as well as memory that is unused because the experiment did
not exercise all the program's functionality or because the
program has dead code or memory allocation problems. The
Pages display offers two viewing modes: pages and seg­
ments. The Pages mode shows you an individual page and
the segment that contains that page; the Segment mode
shows you individual segments and the pages that are con­
tained in those segments.
Statistics. The Statistics display provides statistical infor­
mation about an application's performance that is not obvi­
ous or visible in any of the other Analyzer displays.

Analyzer - demo.l.er

~(Viewl7)~ (Create M apfi Ie ...) Data: ~ Execution Statistics

=
Minor Page Faults: 393 ~ Major Page Faults: 3735

Process swaps: 0

Input blocks: 2325

Output blocks: 1011

Messages se nts: 261

Messages received: 258

Signals handled: 0

Voluntary context switches: 30

Involuntary context switches: 24

Syste m calls: 1068

Characters of I/O: 1500

Working set size (Pages): 92

Maximum working set size (Pages): 92

Minimum working set size (Pages): 30

Avera~e working set size (Pages): 58.875

= D[i[li) 0
Display: ~ Statistics linit: 0
Sample5~ 1-3; (

I I I I) % of experiment
0 100

Figure 3.1S. Statistics display.

3.6 Analyzer 233

www.manaraa.com

234

The Statistics display often yields surprising information
about system behavior that affects application performance.
For example, the display shows the number of times a pro­
cess is swapped out of main memory. A high number of pro­
cess swaps may indicate that a large number of other
processes were running at the time you collected experiment
data or that the workstation was provided with too little
memory. Although you cannot change these conditions di­
rectly by altering your application, they may affect the min­
imum system requirements you recommend for the
application.

The following data is shown in the statistics display:

• Minor page faults - the number of page faults serviced
that did not require any physical input/ output (I/O) ac­
tivity.

• Major page faults - the number of page faults serviced
that did require physical I/O activity. Pages serviced in­
clude kernel-initiated page ahead operations. If this
number is nonzero, then the overview display shows
text or data fault wait time.

• Process swaps - the number of times a process was
swapped out of main memory.

• Input blocks - the number of times a read system call
was performed on a noncharacter or special file.

• Output blocks - the number of times a write system
call was performed on a noncharacter or special file.

• Messages sent - the number of messages that were
sent through sockets.

• Messages received - the number of messages that
were received through sockets.

• Signals handled - the number of signals handled. Al­
though signals are not visible in the other displays, the
routines that handle signals are visible. Therefore, large
signal handling activity in the statistics display alerts
you to examine functions that handle Signals and are
shown to use large amounts of time in the histogram
display.

• Voluntary context switches - the number of times a
context switch resulted because a process voluntarily
gave up the processor before its time slice was complet­
ed in order to wait for availability of a resource.

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

Reordering Program
Text

Exporting
Experiments

3.6 Analyzer

• Involuntary context switches - the number of times a
context switch resulted because the process was pre­
empted by a higher priority process or because the pro­
cess exceeded its time slice.

• System calls - the total number of system calls pro­
duced by the process.

• Characters of 1/0 - the number of characters trans­
ferred in or out of a process by read and write calls to a
character device or file.

• Working set size - total number of memory pages al­
located to the working set.

• Maximum working set size - the maximum number
of memory pages used by the working set in anyone
sample.

• Minimum working set size - the minimum number of
memory pages used by the working set in anyone sam­
ple.

• Average working set size - the number of memory
pages used by the working set while the program was
running, averaged over the total number of samples.

The Analyzer can reorder text to help reduce the text working
set size. The text is reordered automatically when you select
Reorder Program on the base Analyzer window after having
collected profiling data. The strategy used by the Analyzer
for reordering the program text is to classify each function
according to how often it is called. The Analyzer sorts the
functions in descending order of function count and stores
the reordering in a map file. The Analyzer then relinks the pro­
gram, keeping often-called functions together. This strategy
can produce significant reductions in the text working set
size because infrequently used functions are grouped to­
gether on pages that are rarely part of the text working set.

.-1);11 Reorder Program

Mapfile: +"--______ _

Figure 3.19. Reordering program text.

You can export the data collected by the Debugger into files
for use by other programs such as spreadsheets or custom-

235

www.manaraa.com

3.7
FileMerge

FileMerge Window

"L ine Changed" Glyph

"L ine Deleted" GIYPhl

"L ines Differ" Glyph •

written applications. The format of the export data file is well
documented in SPARCworks technical documentation.

SPARCworks FileMerge provides a convenient way to merge
two text files or directories of files. Most FileMerge function­
ality is duplicated in the SunOS di f f(l) utility, but the File­
Merge window interface helps merge files more easily and
quickly than any command-line based tool.

In addition to loading two files to be merged, a user can
specify a third file, called the ancestor of the two files. The two
files to be merged are called descendants of the ancestor. When
an ancestor file has been specified, FileMerge marks lines in
the descendants that are different from the ancestor and pro­
duces a merged file based on all three files.

The graphical interface for FileMerge consists of one main
window, in which users do most of their work, and two pop­
up windows for handling files and settings properties.

The FileMerge window is shown in Figure 3.20. The left
and right text panes at the top show input files to be merged
in read-only form; the text pane at the bottom is the output
file - an editable, merged version of the two input files.

® file merge - Ancestor File: ancestor

~ (View v) (prey v) (§ (Props v)

~ (Right v) (By Hand v) ~
file_l file_2

2 This line is 1n all three,riles ! CJ ! 1 This 11ne is deleted in file_l CJ

3 This line is deleted in file..2 • 12 This line is in all three files ~ 4 This line is in all three files 14 This line is in all three files
&&& Added to fil e_1 &&& .. Is This line is in all three files

5 This line is in all three files 16 ~IIlI Changed in f11e_2 m
6 &&& Changed 1 n f1l e_1 &&& 17 This line is in all three files
7 This line is in all three files 18 ft&ft Changed in file_1 and file..2 ft&ft
8 ft&ft Changed in fi 1 e_1 and fil e_2 ft&ft 19 This line 1s in all three files
9 This line is in all three files 110 m Changed in file..2 m
10 This line is changed in file..2 111 This line is in all three files
11 This line is in all three files I IIlIft Added to fil e_2 ftllll r, 12 This line is in all three files 112 This line is in all three files

CJ'" CJ

file merae.o ut .41

:. CJ

•
.4 This line is in all three files
• ..
• • • • • • • .12 This line is in all three files

CJ

1 of 2 Diffs Unresolyed

Figure 3.20. FileMerge window with loaded files and common ancestor.

236

When an ancestor file has been specified for the two files
to be merged (as shown in Figure 3.20), lines in each descen-

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

Merging Files

Viewing Differences
Read-Only

3.7 FileMerge

dant are marked according to their relationship to the corre­
sponding lines in the common ancestor:

• If a line is identical in all three files, then no glyph is
displayed.

• If a line is not in the ancestor but was added to one or
both of the descendants, then a plus sign glyph (+) is
displayed next to the line in the file where the line was
added.

• If a line is present in the ancestor but was removed from
one or both of the descendants, then a minus sign (-) is
displayed as a placeholder in the file from which the line
was removed.

• If a line is in the ancestor but has been changed in one
or both of the descendants, then a vertical bar glyph (I)
is displayed next to the line in the file where the line was
changed.

When two files have been loaded without an ancestor file,
FileMerge does not mark additions and deletions in the input
files because it has no reference to determine whether a line
has been added to one file or deleted from the other.

By default, FileMerge constructs the merged output file by
placing in it all lines that are common between the two input
files. When a line is different between the two files, the user
accepts a line from one of the files and places it in the output
file. The user indicates a preference for one file or the other
by clicking on control-panel buttons. As each difference is
resolved, FileMerge advances automatically to the next dif­
ference.

If neither input file contains a suitable line to use in the
output file, the user can edit the output file directly. In some
cases, the differences from one input file will always be pre­
ferred over the other. In these cases, the difference lines from
one or the other input file can be placed in the output file with
a single control-panel button click.

In some cases you may want to display source files in read­
only mode. In these cases, FileMerge does not display a
merged version of the files but only the loaded source files in
the left and right panes. The second row of control buttons,
which ordinarily govern how differences are merged into an
output file, are also hidden in read-only mode.

237

www.manaraa.com

Loading Lists of Files

3.8
MakeTool

MakeTool Icons

MakeTool Window

238

The command line interface to FileMerge lets users specify
lists of files to load sequentially. This capability is very useful
when two entire directories must be merged. A list of ances­
tor files can also be specified.

To load files from a list, the files to be merged must be pairs
of files with identical local names. The files themselves must
be stored in separate directories. You then create a list of file
names in a listfile and start FileMerge from the command line,
specifying the name of the listfile, the two directories to be
merged, an output directory, and optionally a third directory
of ancestor files. You can then automatically load files succes­
sively as you finish resolving differences in each file pair.

MakeTool is an OPEN LOOK interface to make(l), the SunOS
utility that oversees program compilation and ensures that
programs are compiled from the newest sources. In addition,
MakeTool contains a browser that helps you interpret make­
files by expanding macros and rules.

MakeTool in its closed form is represented by one of three
icons, as shown in Figure 3.21. Each icon represents a differ­
ent condition of a make build process. A glance at the icon
tells you the status of a long make task.

• The first icon indicates that a make has successfully
completed. This icon is also displayed before the first
make of a session.

• The second icon shows that make has been started but
is not yet completed. This icon is animated: it shows
source files being fed into a "make machine" and rolling
out on a conveyor belt as compiled objects.

• The third icon indicates that make has failed due to an
error.

Successful Make

r'~"l

I~ !
! Make !
~ -.- .. -... -.- .. -... --.. j

Make In Progress

Figure 3.21. MakeTool icons.

r"~'~"l
! :-0@r~~ !.
i ~~ i
L. ~.~.~.: , ,,'

Failed Make

The MakeTool base window (Figure 3.22) opens when Make­
Tool starts. MakeToolloads a makefile automatically using
the same search algorithm as make. If MakeTool finds a
makefile, it is loaded and displayed in the main MakeTool

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

Control Area

Transcript Pane

window. The name of the working directory is displayed on
the first text entry line; the name of the makefile that was
found in the working directory is shown on the second line.

@) SPARCworks MakeTool

~ (Browser ...) (Properties 'J)

Makefile: ./Makefile

(Make:) @) compil!le,

pedxing% cd . =
${MAKETOOlHOME}${MAKETOOlHOME:+/bin/}maketool_exe< "make compil e"
/tmp_mnt/home/sponge3/rickp/SW/MT/demo
Variable syntax.
pedxing%

~
=

Adding compile to the command menu.

Figure 3.22. MakeTool base window.

To build a make target, the user clicks on the Make button.
MakeTool responds by changing directories to the working
directory (if necessary), setting shell environment variables
as required, and issuing a make command.

All commands MakeTool issues are echoed in the Tran­
script pane in the MakeTool window. The Transcript pane is
a standard OPEN LOOK terminal pane, so all standard Com­
mand Tool features can be used in it - including typing of
commands directly into the window at the command
prompt.

Building the Make Menu The abbreviated button next to the Make button reveals a
menu that is filled with arguments and options to the Make
command. As MakeToolloads a makefile, it examines the
makefile to find high-level make targets and places them in
the menu. Subsequently, the user can initiate a build of one
of these targets simply by selecting from the menu. Because
the targets are displayed in a menu, users do not need to list
the text of a makefile in order to identify the targets they want
to build, as is often the case when they use make directly
from the command line.

3.B MakeTool

MakeTool maintains a history of recently used make op­
tions and arguments and keeps them in the Make Target ab-

239

www.manaraa.com

Makefile Browser

Browser Window

240

~ default

- default ;--

tidy

tags

build

TAGS

clean

compile

- update -

Figure 3.23. Make abbreviated menu.

breviated menu so that users can quickly rebuild a target
using those same arguments.

As developers have learned to exploit the power of make and
apply it to larger and larger projects, makefiles have grown
more complex and difficult to maintain. Macros in particular
can be difficult to understand because they are often nested,
appended to, and defined conditionally (so that they take on
different values depending on the target being compiled).
MakeTool contains a browser to help developers interpret
makefiles by expanding rules and macros. Note that the
makefile browser shows rules and macros but does not pro­
vide the means to edit them.

Open the Browser window by clicking on the Browser but­
ton in the MakeTool base window. The window is shown in
Figure 3.24.
Rules and Macros. The Makefile Browser displays all the
rules and macros in the makefile in a single list. Rules and
macros are defined as follows:

• Rule - a makefile rule is defined as a target, its depen­
dencies, and the method used to build the target from
the dependencies. Typically, a rule is a command line in
a makefile that invokes a compiler or linker.

• Macro - a makefile macro is a variable that is used in
dependency lists and rules. Macros are used in make­
files to increase their flexibility and maintainability.

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

Viewing Statement Sources
and Expansions

3.8 MakeTool

Makefi Ie Browser

Search: +<>--___________________ _

Filter: ___________________ _

Makefile Statements:

COMPILE.s = $(AS) $(ASFLAGS) $(TARGET_MACH) =1
COMPILE.scm = $(ESHC) $(ESHCFLAGS)-c

I CPPFLAGS $(ESH INCLUDE PATH) $(CPPFLAGS.ansi.$(ESH SUNOS)) -I$(GUII ~ ...
CPPFLAGS.ansi.SUNOS4_1 = -l/usr/local/lang/SC1.O/ansi_include I!l
CPPFLAGS.ansi.SVR4 = I
CPS = cps

L-_____________________ ~=

Statement Source and Expanded Source:

CPPF LAGS = $(ESH-INCLUDE-PATH) $(CPPFLAGS. ansi. $(ESH_SUNOS))
- I$(GUIDEHOME)/i ncl ude - I$(OPENWINHOME)/i ncl ude -1.
-DSUN_PELNO_PATIERN=25

CPPF LAGS = - I/net/sws/export/set/sparcworks2/scheme/i ncl ude
- I/usr /1 ocal /1 ang/SC1. O/ansi_i ncl ude
- I/net/jans/export/gu; de/3. OBeta1 /sun4/i ncl ude
- I/set/pubs/ow3/i ncl ude -1. -DSUN_PELNO_PATIERN=25

1
~ ~ _____________________ ~o

Included from the default Makefile M akefi Ie. dey: 164 State me nts

Figure 3.24. Makefile Browser.

In makefiles, any line of the form STRINGl = string2 is
a macro definition. STRINGl is the name of the macro, and
s t ring 2 is the definition of the macro. Following such a def­
inition, whenever make encounters the expression
$ (STRING1) in the makefile, it expands the string to the
value string2.

Rules can be sorted into three categories for display pur­
poses: special rules, implicit rules, and ordinary rules de­
fined within the current makefile. Similarly, macros can be
sorted into two categories: conditional macros and all others.

You can narrow the range of statements displayed in the
Browser by setting filters in a Properties window (Figure
3.25). The filters allow only certain statements to be shown
- only rules used to make the current target, for example -
so that confusing, extraneous statements are hidden from
view. Within each category of rule or macro, the Browser
sorts statements into the following types:

• Special rules first, then regular rules, then implicit rules
• All macros that are not conditional macros first, fol­

lowed by conditional macros.

As shown in Figure 3.24, each statement is displayed on a
single line in the Makefile Statements pane. Below the Make-

241

www.manaraa.com

Searchingfor Text

Filtering Statements

242

Maketool Properties

Usage Targets: _________ _

Hide Statements That: 0 aren't used to make the usage targets

o were included in this Makefile

o were included by default

o defi ne re'3 u lar macros

o define conditional macros

o defi ne imp licit ru les

o defi ne re'J u lar targets

o define special targets

Sort Statements By: I Type I Makefile Location I Alphabetically I

Figure 3.25. Makefile Properties window.

file Statements pane, the complete source of a selected state­
ment (its literal representation in the makefile) and its
expanded version are shown in a separate pane.
Statement Sources. Seeing the source of a statement is use­
ful when the entire rule or macro is too long to be shown on
a single line; the display of source wraps the line so that all
of it is visible.
Statement Expansions. To expand a statement, MakeTool
replaces all macro expressions of the form $ (NAME) with
their values. Because many macros are made up of other
macros, determining their expanded values from source
statements can be difficult for a user without the aid of Ma­
keTool Browser.

The Browser window provides a text entry field for entering
search strings. In Figure 3.26, a user has typed the word
"Sun" into the search text entry field. The first line that con­
tains the word is automatically selected in the Makefile State­
ments pane. To select other lines that contain "Sun," the user
would press the down-arrow key. The search wraps through
the makefile, so repeated pressing of the down-arrow key
would eventually bring the user back to the first line that con­
tains "Sun."

The Browser window also provides a text entry field for en­
tering filter characters. When text is entered in the Filter field,
only statements that contain the text are displayed.

Chapter 3. The SPARCworks Programming Environment

www.manaraa.com

Starting MakeTool
from Other
SPARCworks Tools

3.B MakeTool

Makeflle Browser

Search: .::..:Su:..:.l!),,~ ________________ _

Filter: ___________________ _

Makefile Statements:

I·INIT: sw_tooltalk.h Sun_PeLopnums.h maketool.P mt command.G mt brq =1
GXV = $(G U IDE HO M El!b i n!gxv -ans i
CC.sVR4 = cc

~
I

CC.S U NOS4 _ 1 = ace
CC = $(CC.$(ESH_SUNOSll
CFLAGS.pic.SVR4 = -Kpic

L-____________________ ~,=

Statement Source and Expanded Source:

• INIT: sw_too ! tal k: h Sun_Pei _opnums. h maketoo 1. P .Cco •• and. G 1
mCbrowser. G maketooLdefs. h backend-ap;. h path. h xy_util. h
xv_system. h xv_av1; st. h xv_scroll; ng_1; st. h mt-; d1 e.; con mt-busy.; con
mt-fail ed. ; con mt-busyO.; con mt-busy1.; con mt-busy2.; con
mt-busy3.; con mt-busy4.; con

Sou rce and expans; on are the saini.

~ L-~ ___ ~ _______________ ~=

Defined in this Makefile Makefile.dev: 164 Statements

Figure 3.26. Browser window with "Sun" search string.

Figure 3.27 shows a Browser window in which the user
has set a filter for the string "Pei" and combined it with a
search for the word "Sun." The Makefile Statements pane
shows only statements that contain the string "PeL" From
those statements, the Browser searches for statements that
contain the word "Sun."

Users often initiate program builds with make from other
SPARCworks tools such as Debugger and SourceBrowser.
These tools give users the option of initiating the build di­
rectly or by calling on MakeTool as the make interface. When
other SPARCworks tools activate MakeTool, they pass it the
following information to use during the build:

• Name of the makefile to use
• Name of the working directory
• Shell environment variables in force, and their values.

When MakeTool receives the information, it reacts as fol-
lows:

• Starts a temporary subshell in which to run make
• Loads the specified makefile
• Changes to the working directory in the subshell
• Sets the necessary environment variables in the subshell
• Issues the make command in the subshell.

243

www.manaraa.com

3.9
Conclusion

244

Makeflle Browser

search: ;:..;su::..;;n'--_________________ _

Filter: ;...;Pe~~'----_______________ _

Makeflle State me nts: r----------------------,=
,INIT: sw_tooltalk,h Sun_PeLopnums,h maketool,P mCeommand,G mCbro ~
I Sun_PeLopnums,h: Sw/sw tt//Sun_PeLopnums,h; sees get -s $? -G$@ I

•

L-____________________ ~=

Statement Source and Expanded Source:

~S~u~n_~Pe~;~_o~pn~u~ms~,h~:~Sw~/s~w_·t~t/n/~Su~n_np~e;r~~p~nu~ms~,"h--------,=
sees get -s $? -(;$@.

Sun_PeLopnums. h: Sw/sw_tt/ /SunJle;_opnums. h
sees get -5 5w/sw_tt/ /Sun_PeLopnums, h -(;Sun_PeLopnuls. h

~~~ __________ ~J 
Defined In this Makefile Makefile,dev: 164 Statements 

Figure 3.27. Browser window with "Sun" search string and 
"Pei" filter. 

This scheme allows users to use MakeTool easily during 
debugging sessions when, for example, the load library path 
(LD_LIBRARY_PATH environment variable) has been set to 
a nonstandard directory. 

SPARCworks tools, with their high performance and full fea­
ture set, enhance the already rich SunOS software develop­
ment environment. Together, SPARCworks tools provide the 
following advantages: 

• The consistent look and feel provided by the standard 
OPEN LOOK interface shortens learning time for new 
users. 

• Visual and functional compatibility with DeskSet™ 
tools such as File Manager and Text Edit give SPARC­
works tools added value in the Sun development envi­
ronment. 

• SPARCworks Manager provides a uniform way to inte­
grate new tools into the SPARCworks toolset and coor­
dinate them with the standard SPARCworks tools. 

Chapter 3. The SPARCworks Programming Environment 



www.manaraa.com

3.9 Conclusion 

• For simultaneous static and dynamic program analysis, 
Source Browser and Debugger form a powerful combi­
nation. 

• The concise graphical presentation of data provided by 
Source Browser and Analyzer quickly clarifies program 
structure and uncovers performance bottlenecks. 

• The process of building programs and maintaining 
makefiles is assisted by MakeTool, a graphical interface 
for the popular make utility. 

• Differences between source files can be found easily and 
a merged version of two source files can be created 
quickly with FileMerge. 

245 



www.manaraa.com

CHAPTER 4 
Integrating Development Tools 
with SPARCworks 

4.1 
SPARCworks 
Tool Integration 

The SPARCworks toolset is a suite of tools for software ap­
plication developers. As mentioned earlier, Release 2.0 of 
SPARCworks consists of six standard development tools: 

• SPARCworks Manager 
• Debugger 
• Source Browser 
• FileMerge 
• MakeTool 
• Analyzer 

SPARCworks Manager is a unifying graphical desktop 
tool for managing SPARCworks programming tools. 
SPARCworks Manager is a visual organizer that provides 
easy accessibility for starting and quitting tools. SPARC­
works Manager also provides software session control and 
the means to customize the environment in which the tools 
operate. 

In addition to the six standard tools supplied by Sun, it is 
possible for you as a third party developer to integrate your 
software development tools into SPARCworks. With Release 
2.0 of SPARCworks, two types of integration are possible: 

• A tool may be integrated so that its execution and oper-



www.manaraa.com

SPARCworks 
Manager 

dbx 

The ToolTalk Service 

248 

ation environment are controlled by the SPARCworks 
Manager. 

• A tool may be integrated so that it can obtain realtime 
program analysis data from the Sun debugger (dbx). 

There are many advantages to integrating your tool with 
SPARCworks Manager. 

• Your tool appears on the same graphical"palette" as the 
standard Sun programming tools. 

• SPARCworks Manager provides an easy-to-use, unified 
means to execute programs and control the program­
ming environment. All tools (both yours and Sun's) are 
executed and managed through a single graphical inter­
face. Integrating your tool with SPARCworks Manager 
provides your users with: 

o Drag-and-drop execution for all integrated tools. 

o The ability to group development activities into logical 
SPARCworks Manager sessions. Multiple sessions can 
execute simultaneously, each within its own environ­
ment. 

o The ability to organize and maximize screen real estate 
visually. Groups of programming tasks can be closed 
to a single icon, and SPARCworks Manager sessions 
can be completely hidden from view. 

o A centralized facility through which environment 
variables and the working directory can be simulta­
neously set for all development tools. 

The Sun debugger-dbx-is a powerful tool for doing static 
and dynamic analysis of program execution. During pro­
gram execution, dbx obtains detailed information about a 
program's behavior. In SPARCworks 2.0, dbx broadcasts 
this information via the Sun ToolTalk™ service. This is the 
method that dbx uses to provide information to its graphical 
interface program-SPARCworks Debugger. 

By integrating your application, it is possible for your ap­
plication to receive the same detailed information as the 
SPARCworks Debugger. 

SPARCworks Manager session control and dbx interaction 
is accomplished through use of the Sun ToolTalk service. The 
ToolTalk service is a network-spanning, interapplication 
communication service that allows applications to commu-

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

Organization 

4.2 
SPARCworks 
Manager 

I~~~ ~ . ..-~ 
I ,~r~·r) 

SPARcworks 

nicate with other autonomous applications. Special SPARC­
works protocols have been designed from the larger ToolTalk 
service to provide the means for SPARCworks Manager and 
dbx to communicate with and transfer data to your tool. 

The remainder of this section is divided into three sections: 

• An overview of the SPARCworks Manager. 
• An overview of the ToolTalk service and its general use 

in tool integration. 
• A description of the special ToolTalk protocols designed 

for SPARCworks Manager and dbx. 

The SPARCworks Manager is a visual organizer that unifies 
the SPARCworks toolset by allowing applications to be exe­
cuted and managed through a single graphical interface. 
SPARCworks Manager provides software session control 
plus the flexibility of customizing tools and the SPARCworks 
Manager. Your tool integrated with SPARCworks can take 
advantage of the utilities provided by SPARCworks Man-
ager. 

This section first describes the SPARCworks tools whose 
icons appear by default on SPARCworks Manager, then de­
scribes the features of SPARCworks Manager itself. 

SPARCworks Toolset SPARCworks 2.0 Toolset consists of six standard tools: 

Debugger 

4.2 SPARCworks Manager 

• SPARCworks Manager 
• Debugger 
• Source Browser 
• FileMerge 
• Maketool 
• Analyzer 

Debugger is a sophisticated window-based tool that inter­
faces with dbx. It helps in debugging programs and signifi­
cantly reduces time in the debug-edit-compile cycle. 
Debugger offers a program editing facility so the user need 
not change tools continuously. 

The user-configurable graphical interface provides visual 
feedback and mouse control for most debugging operations. 
It also offers OPEN LOOK® drag and drop support for inte­
gration with other desktop applications. 

249 



www.manaraa.com

Source Browser 

FileMerge 

MakeTool 

250 

Source 

DC .. . 

~~ 
~ 

Source Browser is an interactive window-based tool for ana­
lyzing source code. This tool enables you to find all occur­
rences of an identifier, string, or regular expression in source 
code with ease. Source Browser maintains a list of all queries, 
making it easy to return to a previous query to compare re­
sults. In addition, SourceBrowser offers powerful features 
for customization of browsing. For example, users can re­
strict queries to search for symbols based on how they are 
used in the source. 

The Source Browser consists of four windows: 

• The Code Browser enables you to analyze, query and edit 
your source code. 

• The Class Browser enables you to browse through c++ 
source code libraries quickly and easily. You can view 
the base and defined classes, their data members and 
member functions, as well as class-defined interfaces 
and relationships. 

• The Call Grapher enables you to inspect graphically the 
interrelationships of the functions in your program. 

• The Class Grapher enables you to visualize the classes in 
C++ programs. 

SourceBrowser is integrated with Debugger and SCCS. 

FileMerge aids in comparing files and merging their differ­
ences. It displays two files side-by-side in read-only text 
comparison windows. Beneath the comparison windows is 
an editing subwindow that contains a merged version of the 
two files. The merged version contains selected lines from 
either, or both files. A user can edit this version to produce a 
final merged version of the two original files. 

MakeTool is the OPEN LOOK interface to make, the 
SunOS™ utility that oversees program building and ensures 
that programs are built from the newest sources. In addition, 
MakeTool contains a browser that helps with interpretation 
of makefiles by expanding macros and rules. 

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

Analyzer 

SPARCworks 
Manager and Tools 
Activation 

SPARCworks 
Manager Display 
Formats 

4.2 SPARCworks Manager 

The Analyzer is part of a set of performance analysis tools 
that software application developers can use for measuring, 
recording, understanding, and improving the performance 
of an application program. The Analyzer provides an easy­
to-use graphical user interface for specifying and displaying 
data collected on a target application. The Analyzer can be 
used by all software developers, regardless of whether per­
formance tuning is their main responsibility. 

Data collection for performance analysis is initiated 
through the Collector pop-up window in the Debugger. 

Users start SPARCworks Manager by typing sparcworks 
at the command line. 

Using SPARCworks Manager, programmers can start all 
SPARCworks tools for a particular project from one SPARC­
works Manager. Doing so unifies control of opening, closing, 
hiding, and showing tools during a programming session. 
More than one SPARCworks Manager can be active at one 
time. Tools can be started in two ways: 

• With the OPEN LOOK Drag-and-Drop utility - using 
the mouse to move the cursor on top of the tool icon, 
holding down the SELECT mouse button and dragging 
the selected icon onto the desktop. When the mouse 
button is released, the tool opens, ready for use, at the 
spot where the icon was dragged. 

• Double Click - moving the cursor to the icon of the ap­
propriate tool and clicking twice on the selected icon. 

• Users quit SPARCworks Manager through the standard 
OPEN LOOK window menu. If a tool is active when 
SPARCworks Manager is quit, then SPARCworks Man­
ager requests verification before quitting that tool. 

SPARCworks Manager buttons, menus, and pop-up win­
dows in standard OPEN LOOK format implement SPARC­
works Manager functionality. 

Two formats are offered for displaying SPARCworks Man­
ager: 

251 



www.manaraa.com

@) 

• SPARCworks Manager - (shown below in the default 
format) displays OPEN LOOK standard control buttons 
along with SPARCworks tool icons. 

SPA Reworks Manager 

(File v) (View '\7) (Edit '\7) (properties '\7) (Session '\7) 0 

m ~ ... ~OU~J pc 9 8 (Ii (~J 
Debugger SourceBrowser FileMerge Analyzer Maketool Application 

~ ~ 
Debugger 

~ 
~ 

SourceBrowser 

SPARCworks 
Manager Buttons, 
Menus, and Popup 
Windows 

252 

• Tool Palette - (shown below) provides concise, con­
densed organization and display of SPARCworks tool 
icons only. The Tool Palette allows easy access to 
SPARCworks tools while conserving desktop space. 
The Tool Palette can also be reshaped to a vertical for­
mat. 

mJJ 
FlleMerge 

ii 
Analyzer 

~ 
Maketool 

w 
~ 

Application 

m 
Debugger 

mJ 
SourceBrowser 

9 
FileMerge 

B 
Ana lyzer 

~ 
Maketool 

~ 
Application 

The function buttons at the top of the default SPARCworks 
Manager window summon menus by which users: 

• Save customizations 
• Display a log window 
• Change the default SPARCworks Manager window 
• Delete or duplicate tools 
• Set tool or SPARCworks Manager properties 
• Manage tools during a programming session. 

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

4.2 SPARCworks Manager 

File Button 
The File button saves configurations for the SPARC­
works Manager and individual tools. The pull-down 
menu displays the following options: 

Save 
Stores customizations under the current file name. 

Save As 
Displays a worksheet for modifying the path and file 
name before the customizations are saved. 

View Button 
The View button provides a SPARCworks Manager op­
tion that summons a log window for tool startup process­
es. The pull-down menu displays the following options: 

Compact Palette 
Changes the default SPARCworks Manager format to the 
compact palette format, which displays only the icons of 
the tools. 

Tool Startup Log 
Pops up a tool startup Log window. The Log window 
displays a list of activated tool processes. 

Once the Log Window is displayed, users can see startup 
messages for the tools they have launched. In the example 
below, the startup messages for FileMerge are displayed in 
the Log Window after the FileMerge icon was selectedEdit 
Button 

253 



www.manaraa.com

~ SPA Reworks Manager: Too I Startu p log 
~St~a-r~tl~'n-g~f~i~l-em-e-r-ge--(~Fi~l-e~Me-r-g~e)~-~T~u-e~N~O-V~1~2-1~2~:~03~:~3~9~P~S=T~1~9~91~------~~~ 

filemerge & : 
Startup returned process id 2923 ~ 

254 

Edit Button. 
I 

With the Edit button, users delete and duplicate SPARC­
works tools or align their icons on the SPARCworks Man­
ager display. The pull-down menu displays the 
following options: 

r 

Delete Tool 

Delete Tool 

Duplicate Tool 

Snap Icons to Grid 

Deletes a selected tool. Up to ten deleted tools are listed 
on the Edit button menu and can be restored through that 
menu. 

Duplicate Tool 
Replicates a selected tool. The duplicated tool has all the 
properties and functionality of the original with the ex­
ception of a unique label. The properties of a duplicated 
tool can be modified through the Properties button. 

Snap Icons to Grid 
Automatically realigns icons to an invisible grid at the 
top of the window. The option is particularly helpful 
when a significant number of tool icons are displayed on 
a SPARCworks Manager or after a user rearranges the 
icons on a SPARCworks Manager. 

Properties Button Users can change the start-up properties 
of SPARCworks tools and other tools on the SPARCworks 
Manager palette, customizing them to personal specifica­
tions. Once a tool is customized, the customizations can be 
saved for future use. Advanced customization techniques 

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

even allow users to set parameters for starting up non-win­
dow-based tools, such as vi. 

The pull-down menu displays the following options:Se 

( Ed it ~) ......=====:......,( Sess ion ,,) 

Selected Tool 

Selected Tool 

All Too ls 

Vers ion • akeTool A 

Displays a property sheet for the selected tool, from 
which users customize the tool, its label, and theSPARC­
works Manager icon. 

Here is an example of the property sheet for customizing 
a tool. 

SPARCworks Manager: Tool Icon and Startup Properties 

Tool Name: _m_a_k_et_o_o*t ______________________________________ ___ 

Command: maketool $SUNPRO SWM TT ARGS $SUNPRO_SWM GUI ARGS 

Icon File: maketool.icon 

Icon label: MakeTool --------------------------------------------------

4.2 SPARCworks Manager 

(Apply) (Reset) 

The following environment variables are specific to 
SPARCworks Manager and may appear on the command 
line of the Tool Property sheet. 

$SUNPRO_SWM_TT_ARGS 
Special command line argument that all SPARCworks 
tools use so that SPARCworks Manager session com­
mands are recognized. This variable is set by the SPARC-

255 



www.manaraa.com

256 

works Manager. Applications that support the SPARC­
works session management protocol should specify this 
variable as the first command line argument. 

$SUNPRO_SWM_GUI_ARGS 

Command line arguments that specify the initial position 
of windows when drag and drop is used. If double click 
is used to open a window, this value is set to zero. 

$SUNPRO_SWM_APP _DIR 
Directory path that is set when a pathname or a FileMan­
ager icon is dropped on the SPARCworks Manager Drop 
Target in the upper right corner of the SPARCworks 
Manager control panel. The current working directory is 
changed to the directory component of the pathname 
and the SUNPRO_SWM_APP DIR environment variable is 
updated. 

$SUNPRO_SWM_APP _FILE 
Path that is set when a pathname or FileManager icon is 
dropped on the SPARCworks Manager Drop Target in 
the upper right corner of the SPARCworks Manager con­
trol panel. The SUN_SWM_APP _FILE is set to the file 
component of the path. The tool icon labeled Application 
starts $SUNPRO_SWM_APP _FILE. 

The properties are indexed by the name of the tool. Be­
neath the Tool Name entry is the command line executed to 
start the tool. You can edit the command line and specify 
different commands for a tool, thus creating a customized 
version of a tool that can be saved under a unique label name. 

All Tools Displays a property sheet for SPARCworks Man­
ager. From the property sheet, users can: 

• Change the working directory for starting SPARCworks 
tools 

• Change environment variables and then alter the value 
displayed for the variable in the right column. 

Here is an example of the SPARCworks Manager property 
sheet. 

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

SPA Reworks Manager: Pro perties 

Worki ng 0 irectory: lauto/home/new _ proi 

Startup Environment: Environment Variable Value: 
.---------------------~~ ~ 

EXINIT 
FONTPATH 
GUIDEHOME 

HELP PATH 

~ 
I 

~ 
I 

~--------------------~~ ~ 

@) 

(File 'V) 

m ~ .. , 

Debugger 

(APply) (Reset) 

Version Displays the current SPARCworks Manager 
version number in the status area at the bottom of the 
SPARCworks Manager window. 

SPARCworks Manager 

(V iew 'V) ( Edit 'V) (Properties 'V) ( Sess ion 'V) D 
~ou~1 pc ~ m Ii • ~~ 

SBrowser FileMerge Analyzer MakeTool Application 

5 PA Reworks Manager Pre-A I p ha 

4.2 SPARCworks Manager 

Figure 4.1. Version windowl. 

Session Button. The Session button provides the function­
ality for monitoring a programming session. The menu op­
tions make it easy to work with several window-based tools 
at a time by opening, closing, hiding, or showing all the tools 
associated with a SPARCworks Manager. The button options 
are particularly helpful to a user working with multiple in­
stances of SPARCworks Manager at one time. 

The pull-down menu of the Session button displays the 
following options: 

257 



www.manaraa.com

Drop Target 

258 

( Sess ion 'V) 

Session 

C,-o......;.p_e_n __________ ) 

Close 
Hide 

Show 

Open 
Simultaneously opens all tools that have been started 
from the current SPARCworks Manager and closed 
down to icons. If no tools have been closed to icons, then 
Open has no effect. Figure 4.2 illustrates the display after 
several tool icons were opened by means of the Open op­
tion. 

Close 
Closes all tools that have been opened from the current 
SPARCworks Manager. The open tools close down to 
icons. In the example below, the tools that were open in 
the previous example are closed to icons. 

Hide 
Simultaneously unmaps, or hides, all tools opened from 
the current SPARCworks Manager. All evidence of the 
SPARCworks Manager session is removed from the 
screen. 

Show 
Simultaneously maps, or shows, all hidden tools started 
from the current SPARCworks Manager. Showing tools 
reverses the effect of hiding tools. 

The Drop Target provides drag and drop capabilities for 
starting non-SPARCworks tools. To start a non-SPARC­
works tool with the Drop Target, you can: 

• Cut the pathname of the application from a Command 
tool or Shell tool window and drop it onto the Drop Tar­
get. 

• Drag a FileManager icon and drop it onto the Drop Tar­
get. 

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

I ~ " Itpp OJition 

I\UII kefl Ie: 

( M'ko. ) m • _______________ _ 
Uni1~ 0 ", 

Figure 4.2. Multiple SPARCworks managers and multiple open tools. 

4.2 SPARCworks Manager 

Note - User-defined Application tools may not support the 
SPARCworks ToolTalk protocol and therefore operate dif­
ferently under SPARCworks Manager than SPARCworks 
tools. The main difference will be that the Session options 
will not be supported. 

The Drop Target is located in the upper right corner of the 
SPARCworks Manager control area as shown in Figure 4.3 
below. When you drag a FileManager icon or path name on 
top of the Drop Target, it becomes shaded. 

Once you drop a path name or FileManager icon onto the 
Drop Target, the current working directory is changed to the 
directory component of the pathname. The path name of the 

259 



www.manaraa.com

~ SPARCworks Manager "'1 
\ 

(File 'i7) (View 'i7) (Edit 'i7) (properties 'i7) (sess ion 'i7) ~~ .. 

~ ~ ... ~ourcJ pC 
Debugger SourceBrowser 

.... 

Figure 4.3. Drop target. 

~ 

9 (iij Ii) ~~~ ~~ 
FileMerge Analyzer Maketool Application 

~ 

application is displayed in the message area at the bottom of 
the SPARCworks Manager window. Figure 4.4 shows the 
application path name display. 

SPARCworks Manager 

(File 'i7) (View 'i7) (Edit 'i7) (properties 'i7) (Session 'i7) D 

~ ~ ... ~ourc1 pC 9 (iij Ii) ~~~ ~~ 
Debugger SourceBrowser Fi leMerge Analyzer Maketool A p plication 

A p pi ication: CAM, Worki ng Directory: lauto/home!dy namo/kal i/kal i/g lobe de mo!maps!C. 

Figure 4.4. Drop target message display. 

SPARCworks Manager 
Background Menu 

260 

• To start the application that you dropped on the Drop 
Target, double click on the Application icon. 

Note - Dropping a path name onto the Drop Target that is 
not the path of an application will results in an error mes­
sage. 

The SPARCworks Manager background menu can be ac­
cessed at all times. The background menu offers the same 
options as the Session pull-down menu and the View pull­
down menu combined. 

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

4.3 
Integrating 
Development 
Tools with the 
ToolTalk Service1 

~ Session 

( Open 

Close 

Hide 
Show 

\j iew [> 

This section describes how the ToolTalk service allows your 
application to communicate with other autonomous applica­
tions. Tutorial-style instructions for modifying your applica­
tion to communicate via ToolTalk messages are given in the 
latter half of this section. 

As mentioned earlier the ToolTalk service provides multi­
cast messaging; that is, an application sends a message that 
is delivered by the ToolTalk service to multiple receivers. 
Multicast messaging, with the concept of one-to-many com­
munications, falls between broadcast messaging (one-to-all) 
and point-to-point messaging (one-to-one). The ToolTalk ser­
vice also provides point-to-point messaging between appli­
cations. 

Recall that the ToolTalk service supports two types of mes­
saging, process-oriented and object-oriented messaging. Pro­
cess-oriented messages are addressed to other processes; 
object-oriented messages are addressed to objects managed 
by processes. 

This section introduces you to multicast, process-oriented 
messaging and how to modify your application to send and 
receive these messages. For more information beyond what 
is given in this book on object-oriented messaging and the 
ToolTalk service in general, refer to ToolTalk Programmer's 
Guide. 

1. This section is adapted from the SunSoft Deskset Integration Guide. 

4.3 Integrating Development Tools with the ToolTalk Service 261 



www.manaraa.com

Preparing jor 
Interaction with the 
ToolTalk Service 

To prepare for interacting with the ToolTalk Service, you will: 

• Open communication with the ToolTalk Service 
• Obtain a file descriptor that will notify you when mes­

sages have arrived 
• Setup to receive messages. 

The functions used in these operations are listed in Table 
4.1. 

Table 4.1. ToolTalk initialization functions. 

Function 
Return Value 

Description 
Type 

tt _open char* 

tt fd int -

Open Communication and 
Obtain File Descriptor 

/* 

Opens communication, sets default session to 
current user session, returns procid. 

Obtains file deSCriptor. 

To initialize your process with the ToolTalk service and pre­
pare it to receive messages, you must obtain a process iden­
tifier (procid) and a file descriptor (fd). The file descriptor 
informs your process when messages are delivered. 
t t_open ( ) returns the procid for your process and sets this 
procid as the default procid. 

t t_fd () returns a file descriptor. When a message ar­
rives for the default procid in the default session, the file de­
scriptor becomes active. 

Here's sample code to initialize and register with the 
ToolTalk service. 

* Initialize ToolTalk, using the initial default session, and 
* obtain the file descriptor that will become active whenever 
* ToolTalk has a message for this process. 
*/ 

my-procid = tt_open(); 
ttfd = tt_fd(); 

Setting Up to Receive 
Messages 

262 

When a message has arrived for your application, the file de­
scriptor becomes active. How you are alerted that the file de­
scriptor is active will vary depending on how your 
application is structured. 

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

/* 

XView™ Programs. A program that uses the XView noti­
fier, through XV_main_loop () or not ify_start () ,can 
have a callback function invoked when the file descriptor be­
comes active. Invoke notify_set_input_func () with 
the handle for the message object as a parameter. 

Here's how ttsamplel, an XView program, is set up to 
receive messages. 

* Arrange for XView to call receive_tt_message when the ToolTalk 
* file descriptor becomes active. 
*/ 

notify_set_input_func(base_frame, receive_tt_message, ttfd); 

Using Message 
Patterns to Register 
Interest in Messages 

X Window System Xt (Intrinsics) Programs. A Xt-based 
program uses XtAddlnpu t to watch for arriving messages. 
TNT Programs. A TNT-based program uses wire_Add­
F i 1 eHandl er to watch for an active file descriptor. 
Other Xlib Programs. Programs structured around a se­
lect (3) system call use the file descriptor returned by 
t t_f d ( ) . When the file descriptor becomes active, the select 
call will exit. 

After setting up to receive messages, you need to tell the 
ToolTalk service what types of messages you want to receive. 
To create and register message patterns that the ToolTalk ser­
vice will use when determining message recipients, you: 

• Obtain a message pattern handle 
• Set and add pattern attributes 
• Register the message pattern 
• Unregister the message pattern when you no longer 

want to receive messages that match this pattern. 

The functions used in these operations are listed in Table 
4.2. 

4.3 Integrating Development Tools with the ToolTalk Service 263 



www.manaraa.com

Table 4.2. Message pattern functions. 

Function 
Return Value 

Description 
Type 

tt_pattern_create Tt_pattern Obtains a handle to a message pattern. 

t t_pa t t ern_ <attri- TCstatus Sets the value for this pattern attribute. 
bute>_set 

t t_pa t t ern_ <attri- Tt_status Adds values to this pattern attribute. 
bute>_add 

tt_pattern_reg- TCstatus Registers pattern with the ToolTalk service. 
ister 

tt-pattern_unreg- Tt_status Unregisters pattern from the ToolTalk 
ister service. 

tt-pattern_destroy Tt_status Destroys the message pattern. 

Create a Message Pattern To get a "handle" or "opaque pointer" to a new pattern ob­
ject, use tt_pattern_create (). Use this handle on suc­
ceeding calls to reference the pattern. 

Set and Add Pattern 
Attributes 

To fill in pattern information, use the tt_pattern_<at­
tribute> _add () or t t_pa t tern_ <attribute> _set () calls 
for each attribute of the pattern. See Table 4.3 for pattern at­
tributes relevant to process-oriented messages. 

Table 4.3. Message pattern attributes. 

Attribute Values 

arg char 

barg unsigned char 

iarg int 

address 

category 

class 

disposition 

file char *file 

264 Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

Attribute 

op 

opnum 

scope 

sender 

session 

state 

Registering a Message 
Pattern 

/* 

Values 

char *opname 

int opnum 

TT_SESSION,TT_FILE,TT_FILE_IN_SESSION 

char *procid 

char *sessid 

TT_CREATED,TT_SEN~TT_HANDLED,TT_FAILED, 

TT_QUEUED,TT_REJECTED 

Note - You can supply multiple values for each attribute in 
the pattern except for category; the pattern attribute match­
es a message attribute if any of the values in the pattern 
match the value in the message. 

The following pattern attributes must always be supplied: 

• Category 
• Scope 

When the pattern is complete, register it with t tJ)a t­
tern_register (), and join the sessions or files you spec­
ified. 

Here's sample code to create and register a pattern: 

* Create and register a pattern so ToolTalk knows we are 
* interested in Uttsamplel_value u messages within the session we 
* join. 
*/ 

pat = tt-pattern_create(); 
tt-pattern_category_set(pat, TT_OBSERVE); 
tt-pattern_scope_add(pat, TT_SESSION); 
tt-pattern_op_add(pat, Uttsamplel_value U); 
tt-pattern_register(pat); 

Deleting Message Patterns To stop receiving messages that match a message pattern, use 
ttJ)attern_unregister () to unregister the pattern or 

4.3 Integrating Development Tools with the ToolTalk Service 265 



www.manaraa.com

Registering Interest 
in a Session or File 

tt_pattern_destroy () to unregister and then destroy 
the pattern object. 

The ToolTalk service will automatically destroy message 
pattern objects when t t _ c los e () is called. 

After registering message patterns, join a session and/ or file 
to update the session and file attributes in your message pat­
tern. If you specified a scope of TT_SESSION in your mes-
sage pattern, you need to join the session to notify the 
ToolTalk service to add your sessid to the sessid attribute of 
the message pattern. This automatic update of message pat­
terns by joining sessions or files saves the effort of registering 
a new pattern for each session or file your application is in­
terested in. 

To join or quit a session or file, use one of the functions 
listed in Table 4.4 

Table 4.4. Registering interest functions. 

Function 

tt - session _join 

tt_session_quit 

tt - file _join 

tt - file _quit 

Session 

266 

Return Value Description 

Type 

Tt_status Registers interest in the indicated user session. 

Tt_status Unregisters interest in the indicated user 
session. 

Tt_status Registers interest in the indicated file. 

Tt_status Unregisters interest in the indicated file. 

Use t t_session_j oin () to register interest in messages 
that name a specific session monitored by the ToolTalk ser­
vice. When you join, supply the sessid of the session you 
want to join. Joining a session automatically updates all of 
your session-scoped message patterns with the specified ses­
sid. 

Here's sample code for joining the default user session in 
which this program was started. 

/* 

! * Join the default session 
! */ 

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

File 

Sending Messages 

When you no longer want to participate in the default ses­
sion, inform the ToolTalk service with tt_session_­
qui t ( ). The sessid will be removed from your session­
scoped message patterns. 

To register your interest in messages about a particular file, 
call tt_file_j oin (). Joining a file automatically updates 
all of your file-scoped message patterns with the name of the 
file. The file name is added to a list; it does not replace exist­
ing file names. 

When you're no longer interested in receiving messages 
that refer to the file, call tt_file_quit (). The file name 
will be removed from your file-scoped message patterns. 

To create, fill in, and send a message, use the functions listed 
in Table 4.5. 

Table 4.5. Sending messages functions. 

Function 
Return Value 

Description 
Type 

tt_pnotice_cre-ate Tt_message Creates a procedure addressed notice 
and returns a handle to the message. 

tt_prequest_-create Tt_message Creates a procedure addressed request 
and returns a handle to the message. 

t t_message_ <attribute> Tt_status Sets the value for a message attribute. 
set -

t t_message_ <attribute> Tt_status Adds a value for a message attribute. 
add -

tt_message_send Tt_status Registers interest in the indicated file. 

tt_message_destroy TCstatus Destroys a message that is no longer 
useful. 

Create and Fill In Message To get a "handle" or "opaque pointer" to a new message ob­
ject for a procedural notice or request, use tt-pno­
tice_create () or tt-prequest_create (). Use this 
handle on succeeding calls to refer to the message. 

To fill in message information, use the tt_message_<at­
tribute> _s e t () calls for the following attributes. 

4.3 Integrating Development Tools with the ToolTalk Service 267 



www.manaraa.com

Send the Message 

/* 

• Scope 
Fill in the scope of the message delivery. Potential recip­
ients could be joined to 

oTT_SESSION 

oTT_FILE 

oTT_BOTH 

o TT ]ILE_IN_SESSION 
Depending on the scope, the ToolTalk service will fill in 
the default session and/ or file. 

• Op 
Fill in the operation that describes the notice or request 
you are making. To determine the operation name, con­
sult the message protocol definition. 

In addition to these required attributes, you can fill in 
other attributes, such as operation arguments. 

To send a message, use t t_message_send (). If you no 
longer need the message (for example, you are not expecting 
a reply) destroy the message and free memory with t t_ -
message_destroy(). 
Here's the code for creating and sending a pnotice from the 
ttsamplel program. 

* Create and send a ToolTalk notice message 
* ttsamplel_value(in int new_value) 
*/ 

msg_out = tt-pnotice_create(TT_SESSION, "ttsamplel_value"); 
tt_message_arg_add(msg_out, TT_IN, "integer", NULL); 
tt_message_arg_ival_set(msg_out, 0, (int) xv_get (slider, PANEL_VALUE)); 
tt_message_send(msg_out) ; 

/* 
* Since this message lS a notice, we don't expect a reply, so 
* there's no reason to keep a handle for the message. 

*/ 

tt_message_destroy(msg_out) ; 
} 

268 Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

Table 4.6. Functions for receiving messages. 

Function 

tt_message_receive 

tt_mark 

tt_release 

t t_message_ <attribute> 

tt_message_destroy 

Receiving Messages 

Return Value 
Description 

Type 

Tt_message Retrieves the currently available 
message. 

mark Marks storage for information you 
retrieve from a message. 

Frees storage used by the information 
retrieved from the message. 

(deeends on 
attribute) 

Obtains the value for a message 
attribute. 

Tt_status Destroys a message that is no longer 
useful. 

To retrieve a message, use the functions listed in Table 4.6. 
When a message arrives for your process, the ToolTalk ser­

vice-supplied file descriptor becomes active. When notified 
of the active state of the file descriptor, call tt_mes­
sage_recei ve () to get a handle for a message object con­
taining the incoming message. 

When you use functions that return information such as 
the tt_message_<attribute> () calls, the ToolTalk service 
creates a copy of the information (the original copy is in the 
message structure in this case) and stores the copy in an allo­
cation stack in the API library. The ToolTalk service actually 
returns a pointer to the copy to you. If you don't need the 
information returned by the function, use t t_f ree ( ) to free 
the storage in the API stack. 

The ToolTalk API also provides a more general mecha­
nism, the tt_mark () and tt_release () functions, to 
mark and free information returned by a series of functions. 
The tt_mark () and tt_release () functions are typi­
cally used at the beginning and end of a routine where the 
information returned by the ToolTalk service is no longer in­
teresting after the routine has ended. 

Note - The API allocation stack should not be confused with 
your program's run-time stack. The ToolTalk service re­
turns information from ToolTalk functions by providing 
pointers to the information in the API stack. The API stack 
will not discard information until you tell it to. 

4.3 Integrating Development Tools with the ToolTalk Service 269 



www.manaraa.com

/* 

In the following example, ttsamplel calls tt_mark ( ) 
at the beginning of the routine that examines the information 
in a message. The ToolTalk service returns a mark, an integer 
that represents a location on the API stack. When the infor­
mation examined in the routine is no longer needed and the 
message has been destroyed, t t_release () is called with 
the mark to free storage on the stack. 

Use the t t_message_<attribute> () calls to examine the 
attributes of the message to determine the action you should 
take. 

You can recognize replies to messages you sent by com­
paring the handles. This is why it is important not to destroy 
a request after you send it. When you have finished examin­
ing a message you received, be sure to destroy the message 
using tt_message_destroy ( ) to free memory allocated 
for the message. 

Here's the code from t t s amp 1 e 1 for receiving a message. 

* When a ToolTalk message lS available, receive it; if it's a 
* ttsamplel_value message, update the gauge with the new value. 
*/ 

void 
receive_tt_message() 
{ 

Tt_message msg_in; 
int mark; 
int val_in; 

/* 
* It's possible that the file descriptor would become active 
* even though ToolTalk doesn't really have a message for us. 
* The returned message handle is NULL in this case. 
*/ 

NULL) return; 

/* 
* Get a storage mark so we can easily free all the data 
* ToolTalk returns to us. 
*/ 

270 Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

mark = tt_mark(); 

if (O==strcmp ("ttsamplel_value", tt_message_op (msg_in, 0) ) ) 
tt_message_arg_ival(msg_in, 0, &val_in); 
xv_set (gauge, PANEL_VALUE, val_in, NULL); 

tt_message_destroy(msg_in) ; 
tt_release(mark) ; 
return; 

Stopping Interaction 
with the ToolTalk 
Service 

4.4 
SPARCworks 
Manager and dbx 
Protocols 

Messages Description 
Syntax 

Use tt_close () when you wantto stop interacting with 
the ToolTalk service and other ToolTalk session 
participants. tt_close () closes the current default 
procid. Here's how the t t s amp 1 e 1 program uses this call. 

/* 
* Before leaving, allow ToolTalk to clean up. 
*/ 

tt_close ( ) ; 

exit (0); 
} 

This section describes the ToolTalk service messages that are 
used to connect individual tools that are part of the SPARC­
works 2.0 programming environment. 

The ToolTalk service messages that are used are described 
below. (Note that a BNF-like syntax is used for clarity; stan­
dard Sun font conventions are used thereafter.) 

message::='('Tt_message <attribute>* [<args>] ')' 

attribute ::= '(' <field_name> <value> ')' 

args ::= '(' Tt_args <arg>+ ')' 

arg ::= '(' <direction> [<type>] <value> ')' 

direction ::= TT_IN TT_OUT TT_INOUT 

type ::= string lint 

4.4 SPARCworks Manager and dbx Protocols 271 



www.manaraa.com

SPARCworks 
Session Protocol 

SPARCworks 
Manager 

272 

Values in upper-case are ToolTalk enumeration constants. 
Those in lower-case are variable names (except for the type 
names "string" and "int"). The second level of nesting is re­
quired because arguments do not have separate field names, 
and position in the sequence is significant. This is also re­
quired because of the distinction between <direction> and 
<field_name>. 

In addition to the above, two additional notations are de­
fined: 

1. Optional arguments are enclosed in square brackets 
([]), and are always preceded by an int argument that 
indicates whether the optional argument is present in 
the message. 

2. Variable length lists are indicated by bracketing ("{ 
j*") groups of arguments that may be repeated. These 
lists are preceded by an int argument that tells the 
number of repetitions. 

SPARCworks 2.0 tools are started and controlled in two 
ways, either: 

• Directly by the user, or 
• By the SPARCworks Manager. 

In Release 2.0 of SPARCworks, tools can be started and ma­
nipulated by means of the SPARCworks Manager. When the 
SPARCworks Manager is used to start your tool, the SPARC­
works Manager and your tool must exchange information 
about each other in order to subsequently communicate 
properly using the ToolTalk service. SPARCworks Manager 
must know your tool's procid. Your tool must know: 

• The SPARCworks Manager's procid 
• Its own unique ID key 
• The SPARCworks session number. 

When the SPARCworks Manager itself is started it sets the 
value of the environment variable SW_TT_STARTUP _PRO­

crD to the value of its own procid. 

1. When SPARCworks Manager launches your tool it 
passes it a unique ID string (key) as the argument to 
the - swtm option. 

2. Your tool receives the key and sends a ToolTalk startup 
message back to the originating SPARCworks Manag-

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

er. The message contains the key and the tool's own 
procid. It determines the SPARCworks Manager's 
procid by reading the SW_TT_STARTUP _PROClD 
shell environment variable. 

(Tt_message (Tt_classTT_REQUEST) (Tt_op 
"PEl_STARTED") 
(Tt_address TT_HANDLER) (Tt_handler proeid) 
(Tt_args (TT_lN key) (TT_OUT sw_session))) 

3. The SPARCworks Manager replies to the startup mes­
sage and supplies your tool with the SPARCworks ses­
sion number (sw_session). 

A tool that has been started by the SPARCworks Manager 
may, in turn, start additional tools; the automatic pass-down 
of the environment variable will connect them with a 
SPARCworks Manager. 

Note - The -swtm argument is not required for proper op­
eration, but is provided so that SPARCworks Manager can 
track the tool it starts. 

Alternatively, a tool may acquire more control over tools 
it starts by changing the environment variable and receiving 
the PEl_STARTED message itself. 

A set of messages control SPARCworks sessions. The first 
is a simple ping: 

(TCmessage (Tt_class TT_REQUEST) (Tt_op "PEl_NOP") 
(TCargs (TT_lN sw_session))) 

The remaining messages allow coordinated control of a 
collection of tools. 

These are commands are sent by SPARCworks Manager 
to the tools running in the SPARCworks session: 

(TCmessage (Tt_class TT_NOTlCE) (Tt_op "hide") 
(Tt_args (TT_lN sw_session)) 

o Hide the tool's window. 

(TCmessage (TCclass TT_NOTlCE) (Tt_op "expose") 
(Tt_args (TT_lN sw_session))) 

o Expose the tool's window (if it is hidden). 

(TCmessage (Tt_class TT_NOTlCE) (Tt_op "PEl_OPEN") 
(Tt_args (TT_lN sw_session))) 

o Open the tool's window. 

4.4 SPARCworks Manager and dbx Protocols 273 



www.manaraa.com

Debugger Protocol 
SPARCworks Debugger 

Underlying Debugger 

274 

(Tt_message (Tt31ass TT_NOTlCE) (Tt_op "PEl -
CLOSE") 
(TCargs (TT_lN sw_session» 

o Close the tool's window to its icon. 

(TCmessage (TCc1ass TT_NOTlCE) (TCop "qui t") 
(Tt_args (TT_lN sw_session» 

o Quit the tool. 

When a tool is about to exit, it informs SPARCworks Man­
ager by means of: 

(TCmessage (Tt_c1ass TT_NOTlCE) (TCop "departed") 
(TCargs (TT_lN sw_session» 

The ptype of the SPARCworks Debugger is Sun_Mi­
crosystems_DUI. No static declaration is required for 
SPARCworks Manager interaction (tools register sw_session 
specific dynamic patterns). 

The SPARCworks Debugger starts dbx directly inside the 
command window so it can properly handle user TTY I/O 
both to and from the program being debugged. The Debug­
ger supplies an option and argument: -T proeid, where procid 
is the ToolTalk service procid of the Debugger. dbx then uses 
the PEl_STARTED request defined above to synchronize 
with the particular Debugger that started it and to obtain the 
SPARCworks session ID to insert in all subsequent messages. 

Commands. All commands are sent to dbx via the 
pseudo-teletype connected to dbx standard input; dbx 
writes its normal output to standard out, which is 
connected to the command sub-window of the 
Debugger. 

Notifications. When dbx is running under the SPARC­
works Debugger, it supplies additional information to the 
Debugger via ToolTalk service messages. The messages have 
the form: 

(Tt_message (Tt_c1ass TT_NOTlCE) (Tt_op "DBX_PIPE") 
(TCargs (TT_lN sw_session) ... » 

with the next argument being the message type code and the 
remainder depending on the type. The Debugger identifies 
the notification coming from the particular dbx it started 

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

based on the sender procid obtained from the PE I_S T ARTED 

request. 
The first message sent by dbx identifies the version of the 

message protocol being used. 

(TT_IN I_VERSION) (TT_IN version) 
The list of ToolTalk messages used to broadcast debugger 

events include: 

(TT_IN I_NEWINITDONE) 

(TT_IN current_dir) (TT_IN program) 
(TT_IN cursource) (TT_IN curfunc) (TT_IN cursrcline) 
(TT_IN brksource) (TT_IN brkfunc) (TT_IN cur.brkline) 

o dbx is ready for user commands. 

(TT_IN I_RESUME) (TT_IN command_name) 

o Program execution is about to resume. 

(TT_IN I_BRKSET) (TT_INfile) (TT_IN lineno) 

o A breakpoint was set at lineno in file. 

(TT_IN I_BRKDEL) (TT_INfile) (TT_IN lineno) 
o A breakpoint at lineno in file was deleted. 

(TT_IN I_STOPPED) 

(TT_IN cursource) (TT_IN curfunc) (TT_IN cursrcline) 
(TT_IN brksource) (TT_IN cur.brkfunc) (TT_IN cur.brkline) 

o Program execution has been stopped (includes stop lo­
cation). 

(TT_IN I_DISPLAY) (TT_INfile) 
o File file that contains display information has been up­

dated. 

(TT_IN I_CALLSTACK) (TT_IN cursource) (TT_IN linen 0) 
o linen a in cursource is an address in the call stack. 

(TT_IN I_TRACE) (TT_IN cursource) (TT_IN curfunc) 
(TT_IN cursrcline) 

o Program execution was traced at cursrcline in curfunc 
in cursource. 

(TT_IN I_KILL) 

o The program being debugged was killed. 

(TT_IN I_REINIT) 

o The debugging environment was initialized. 

4.4 SPARCworks Manager and dbx Protocols 275 



www.manaraa.com

276 

~T_INI_QUI~(TT_INSfu~s) 

o The debugging session was quit. 

Another group of messages are used to change the debug­
ger display: 

(TT_IN I_PRINTLINES) (TT_IN cursource) (TT_IN 11) 
(TT_IN 12) 

o Display source code fragments. 

(TT_IN I_CHDIR) (TT_IN directory) 
o Change the working directory. 

(TT_IN I_USE) (TT_IN path_ct) {(TT_IN path)}*) 
o Set the source file search path. 

(TT_IN I_EMPHASIZE) (TT_IN cursource) (TT_IN line no) 
o Highlight a line of source code. 

(TT_IN I_FONT) (TT_INfile) 
o Set the display font. 

(TT_IN I_BOTMARGIN) (TT_IN n) 
o Set the bottom margin of the source display. 

(TT_IN I_CMDLINES) (TT_IN n) 
o Set the number of display lines in the command pane. 

(TT_IN I_DISPLINES) (TT_IN n) 
o Set the number of display lines in the data display win­

dow. 

(TT_IN I_TOPMARGIN) (TT_IN n) 
o Set the top margin of the source display. 

(TT_IN I_WIDTH) (TT_IN n) 
o Set the width of the tool window. 

(TT_IN I_TOOLENV) 

o Set debugger environment attributes. 

(TT_IN I_MENU) (TT_IN seltype) (TT_IN string) 
o Define the debugger menu items. 

(TT_IN I_BUTTON) (TT_IN seltype) (TT_IN string) 
o Define the debugger command buttons. 

(TT_IN I_UMENU) (TT_IN string) 
o Undefine the debugger menu items. 

(TT_IN I_UNBUTTON) (TT_IN string) 
o Undefine the debugger command buttons. 

Chapter 4. Integrating Development Tools with SPARCworks 



www.manaraa.com

ChaPterS 

Devguide The 
Open Windows C.U.I. Builder 

5.1 
Introduction 

This section describes SunSoftTM's OpenWindowsTM Devel­
oper's Guide (Devguide), comparing it to similar products. 
Devguide can help you solve some of your user interface pro­
gramming problems, and help you easily port applications 
running on other hardware platforms to SPARe platforms. 
You will also gain an understanding of how a User Interface 
Builder compares to a User Interface Management System 
(UIMS) and a User Interface Prototyper. 

What is Devguide? Devguide is a user interface builder 
that enables a developer to graphically and interactively de­
sign an OPEN LOOK interface for an application. 

The ideal application is separated into two independent 
parts: application-specific code, and a user interface that 
shows the capabilities and status of that application to the 
user. 

Using Devguide, you can design and layout the user in­
terface part of your application on the screen, test it and mod­
ify it as many times as you like, then save a description of this 
interface in one or more files. Figure 5.1 shows the Devguide 
base window. 

Devguide provides facilities for automatically generating 
SunSoft window system toolkit C, C++, or PostScript code 
from the interface deSCription files. In the 1.1 release, Dev-



www.manaraa.com

278 

~ OpenWindows Deve loper's Cuide - 3.0 

~ View " ) ~ Arrange .. ) Properties .. ) f8uiid Test I r-
reID I EI ·-t~JJ ~ ~ A Text: ~ 

J~ ~ ""-~ <Iiiiiia> 

rA'~ 12 ..J~ IJ "Message" 

r ·~ 1 0 6 11 ~= I I J - j J ~ A 
1-
0 10 

Element (none) 
Position: OOOxOOO Size: OOOxOOO Pointer: X: 000 V: 000 

CopyrightC> 1990.91.92. Sun Mlcrosystems. Inc. 

Figure 5.1. Devguide base window. 

guide includes code generators for the XView toolkit (GXV 
and GXV ++). In the 3.0 release, Devguide includes code gen­
erators for XView (GXV, GXV++), The NeWS® Toolkit 
(GNT), and OPEN LOOK Intrinsics Toolkit (OLIT). You can 
also generate ANSI C for XView using a command line op­
tion to GXv. 

Developers can design an interface without writing any 
code. However, someone has to write the actual application 
(graphics previewer, electronic mail reader, for example) and 
has to connect the application to the user interface. 

As an analogy, picture your graphical user interface (GUI) 
as the control console of a car. The application is the chassis, 
wheels, brakes, transmission, and engine, or other working 
parts of the car. Think of Devguide as the tool you can use to 
generate the speedometer, odometer, tachometer, steering 
wheel, or other control and status elements for the console. 
Devguide in this example would save the car manufacturer's 
engineers from inventing the design for each instrument, re­
quiring a lot of time and resources. 

To carry the analogy further, GXV (or GNT or GOLIT) is 
the agent that specifies how the controls work. The engineers 
just have to go in and physically hook up the mechanical 
parts to the control console (connect the application to the 
interface). The application is fully built when the controls are 
hooked up so that the controls affect the working parts and 
the instruments provide live readings of status. After the user 
interface and application are connected, you can run the ap­
plication (read and send electronic mail, for example); or, 
back to the car analogy, you can start the car and all the work­
ing parts and instruments function as you expect. 

Chapter 5. Devguide - The Open Windows G.U.I. Builder 



www.manaraa.com

5.2 
Overview 

r 

.g ..... 
;:j 
00 
> 
0 

Figure 5.2 shows how Devguide relates to the underlying ap­
plications and SunOS software. 

~ 

.. GIL 
(.G file) 

/. 
IGXVI I GOLIT IGNTI Code generators 

Ixview 
Application lour II Application I~icationl 

XView OLIT Toolkits 

I olgx Xt I~T&T TNT 
OLImagin~ 

Xlib 

X l1INeWS 

Figure 5.2. Devguide, code generators, toolkits and underlying software. 

5.2 Overview 

When you instruct Devguide to save the user interface 
you've created, it saves it in a file or files ending in . G (such 
as speedometer. G, oilgauge. G, steeringwheel. G, 
and so forth). These. G files (or GIL files, for Guide Interface 
Language) can be read in again to Devguide and modified, if 
desired, as many times as necessary. 

When you are satisfied with the interface you've designed, 
save the interface files, then run a code generator program to 
produce window system toolkit C, C++, or PostScript code. 
The currently available code generators are GXV, GXV++, 
GNT, and GOLIT. Choose the option to produce C or C++ 
code for XView, PostScript, C, or C++ code for the NeWS 
Toolkit, or C code for the OPEN LOOK Intrinsics toolkit. 

279 



www.manaraa.com

5.3 
What does 
Devguide do for 
You? 
Speed Up Program 
Development 

Quickly Port Your 
Existing Application 
to OPEN LOOK 

280 

The window system toolkits are implemented using the 
OPEN LOOK graphics libraries or the AT&T OPEN LOOK 
imaging routines with xt intrinsics on top of Xlib. Xll / 
NeWSTM incorporates the X Wmdow System from the Mas­
sachusetts Institute of Technology and the Network extensi­
ble Window System, an innovative PostScript language 
development environment. 

Using Devguide to generate user interface code, you can: 

Using Devguide to generate or modify a user interface saves 
time and effort since it's not necessary to hand-code all the 
tedious elements of a user interface. The interface design can 
also proceed concurrently with the application development. 
Devguide can also generate the "boiler plate" interface ob­
jects and concentrate on the usability of the interface and pre­
sentation of their application. 

You can select and position OPEN LOOK user interface 
objects such as windows, control items, gauges, and menus 
right on the screen. It's as easy as dragging an object from the 
Devguide palette and dropping it onto the workspace. 

Once positioned, you can move or resize objects, remove 
them, add others, and change the design. You can take ad­
vantage of design freedom, knowing that the interface will 
be OPEN LOOK-compliant when finished. 

Templates for frequently used windows and menus are 
included with Devguide to save development time and pro­
mote a standard look and feel among all applications. 

Porting your application to OPEN LOOK using Devguide 
typically takes from a few hours to a few weeks, depending 
on the complexity of the application. 

In the absence of a user interface builder like Devguide, 
generating the code for the user interface part of the applica­
tion is extremely tedious and time-consuming. Think of try­
ing to describe a drawing in terms of coordinates and lines 
instead of simply being able to draw it directly on the screen. 
All the user interface elements would have to be laboriously 
and repetitively programmed, compiled, and tested. This 
could take months. 

Devguide handles the chores of building the user interface 
portion of your application. Using Devguide, you select user 

Chapter 5. Devguide - The Open Windows G.U.I. Builder 



www.manaraa.com

5.3 What does Devguide do for You? 

interface objects such as canvases (drawing surfaces) and 
control panels (with buttons, choices, sliders, gauges, menus, 
and so on) and place the objects directly on your prototype 
application. 

Devguide helps you specify exactly how your application 
appears to the user - and, you can test it before generating 
any code. Select control items and view menu layout, chang­
ing them around until you are satisfied. To test the behavior 
of the user interface before generating the code for it, 
Devguide provides a test mode. In test mode, buttons can be 
pressed, settings can be selected, and the interface behaves 
exactly as it will when later attached to the actual application. 

When satisfied with the user interface, you save its descrip­
tion in a Devguide interface file, the GIL file. The GIL file is 
independent of the particular toolkit you use for the interface 
to your application. You can use one of several conversion 
programs to convert the GIL language into toolkit code for 
the chosen toolkit. 

You are now ready to generate toolkit code by running one 
of the code generator programs available with Devguide: 
GXV, GXV++, GNT, or GOLIT. GXV stands for Guide-to­
XView, and generates files to be used with the XView toolkit 
(including C++ code if you use GXV++). GNT and GOLIT 
create a similar number of files specific to The NeWS Toolkit 
(PostScript) and the OPEN LOOK Intrinsics Toolkit. In Fig­
ure 5.3, you see a diagram of the process of generating code 
for The NeWS Toolkit. This process also applies to the other 
code generators.] 

Once you generate toolkit code, you probably want to 
tweak it. You can easily modify the user interface, rerun the 
code generator and then retest, perhaps repeating the cycle 
several times. 

You can modify the interface-name_stubs. c file 
(later referred to as _stubs. c file) to fill in the substance of 
any callback routines generated when the interface was spec­
ified. It is not a good idea, however, to modify the Devguide­
generated interface-name_ui . c file. If you do, and later 
want to use Devguide again to modify the interface, your 
manual changes will not get saved. It is best to keep the in­
terface creation code separate and untouched from the inter­
face callback code, which is in the _s tubs. c file. 

Each code generator produces its own set of files to in­
clude interface and application code. As an example, GXV 
produces the following files: 

281 



www.manaraa.com

282 

Prototype 
User 
Interface 

GNT 

Devguide 

User 
Interface 

GXV GOLIT 

Toolkit 
Code + Application 

Code 

Complete 
Application 

Figure 5.3. Generating code for the NeWS toolkit (TNT). 

• interface-name_ui. c. Contains the interface cre­
ation routines for all the elements. 

• interface-name_ui. h. Contains structure declara­
tions. 

• interface-name_stubs. c. Contains the "main" 
function and any callback routines associated with in­
terface operation. 

• interface-name. info. Contains any help text spec­
ified for any of the interface elements. 

• Make f i 1 e. Generated if it does not already exist. 

For Devguide 1.1, GXV and GXV ++ are the only code gen-

Chapter 5. Devguide - The Open Windows G.U.I. Builder 



www.manaraa.com

Quickly Design and 
Test a User Interface 

Generate Online HeLp 

5.3 What does Devguide do for You? 

erators available. Once you've compiled your interface and 
generated toolkit code, you can do one of two things: 

1. Rename your "stubs" file (ends in _stubs. c) and 
edit the renamed version to insert your application 
code, then compile and run your application, or: 

2. Add your application code to the original_stubs. c 
file produced by GXv, compile and run your applica­
tion, then edit your interface using Devguide. When 
you save the new version, you get a new . G file. 

If you are running Devguide 1.1, run gxv _merge on the 
new . G, which creates new interface code and merges that 
with your previously added application code. 

In Devguide 3.0, gxv _merge is built into GXV, so it is not 
necessary to run it separately, as described in the previous 
paragraph. 

Note- You may also have to edit your Makefile, set envi­
ronment variables, and take care of anything else needed to 
combine the application and the user interface. 

Devguide offers enhanced alignment features to quickly lay 
out and modify portions of a user interface. You can select 
objects to be aligned horizontally, vertically, or to a grid. You 
can also specify the distribution for those objects. They can 
be distributed evenly in the horizontal or vertical space or 
laid out with a specific number of pixels between them. 

Devguide's grouping feature enables you to select objects 
and put them into a group. (A group is a collection of user 
interface objects that is treated as a single unit.) A group can 
be copied, moved, or deleted as a single entity. Objects in­
cluded in a group maintain a physical relationship with other 
objects in that group. Therefore, when the group is moved, 
or if an object in the group changes size, the relative position­
ing of the individual objects remains the same. This is espe­
cially important for localizing applications when button 
sizes may change due to different font sizes or languages. 

When you're creating elements of your user interface, you 
may want to write some explanatory help text. Devguide 
simplifies the process of creating help by providing a Help 
Editor window in which you can type the help text and spec-

283 



www.manaraa.com

Easily Design or 
Modify User 
Interfaces 

Integrate With Other 
OPEN LOOK Tools 

Internationalize Your 
Application 

Translation 

284 

ify which element to attach it to. The help text gets incorpo­
rated into the interface element's. G file when you save it. 

When you run the code generator, Devguide creates the 
help files for you and puts the appropriate window system 
subroutine call or attribute value into your source code file. 

In the 3.0 release, you can view the help text even before 
you save the interface. Put Devguide in test mode, move the 
mouse pointer over the element you are interested in, and 
push the Help key. 

No programming is required to generate the user interface 
with Devguide. It can even be used by those without pro­
gramming experience, such as interface or graphic designers. 
So, try out many different ideas: resize, move, and change the 
look and feel as much as you like. 

When you develop an application to be integrated with other 
OPEN LOOK tools, you can specify that the application re­
spond to drag-and-drop events. Your application can then be 
used easily with File Manager because a user can drag a file 
from File Manager onto your application. If you do nothing 
in your application to support drag-and-drop, then nothing 
will happen. Devguide writes the drag-and-drop code into 
the event procedure in the _stubs. c file when you specify 
an event handler in the control area's property window. 

First a little background on internationalization. Two issues 
quickly present themselves: one, the text of your application 
needs to get translated into other languages; two, depending 
on the language family (Indo-European or Asian, for exam­
ple) and the font, the characters you want to display may 
require varying amounts of space-in memory (multiple 
bytes) and on your screen. The default size of user interface 
objects is partially determined by the font of the characters 
displayed within them. 

You must add two mechanisms to an application for it to 
be truly internationalized: 

• A way to translate text strings from a text database. 
• A way for the interface to be laid out correctly in the new 

language. 

The developer inserts function calls into the application 
source code wherever strings are used. These calls will be 
used to look up the strings in other languages, or "locales." 
Once the internationalization "hooks" are in the source code, 

Chapter 5. Devguide - The Open Windows G.U.I. Builder 



www.manaraa.com

Size and Position of 
Elements 

5.3 What does Devguide do for You? 

you run a utility against the source to produce a specially­
formatted ASCII file. This ASCII file contains the original text 
strings and placeholders for their translations. Someone 
(usually someone other than the developer) translates the 
strings into the local language, then, using another utility, 
creates a binary version (the text database, or text domain) 
from the previously-mentioned ASCII file. 

There are two mechanisms for positioning objects. The most 
general method is to use relative layout or "grouping," in 
which object positions are based on other objects. See the 
Quickly design and test a user interface section, given earlier for 
a discussion of Devguide's grouping feature. Grouping facil­
itates the use of multiple fonts and sizes. 

Another method for positioning objects is available if you 
choose to explicitly position and size the objects making up 
your interface. This method uses an X Windows-style re­
source database. The application retrieves the size and posi­
tion information of the objects making up the application's 
interface from the resource database. 

If you use a relative layout scheme in which objects are 
positioned relative to other objects you shouldn't need to use 
the size and position database. If you explicitly specify x,y 
coordinates for your interface objects, you will need to use 
the size and position database. 

The code generator produces function calls and attributes 
for the interface that allow an application to access the locale­
specific databases. The code generator can also generate the 
X resource database (containing size and position informa­
tion) for the developer, if desired. 

If you do not use the grouping feature of Devguide, after 
the strings have been translated, you run a utility called 
gmomerge to merge the translated text back into an existing 
English . G file. This merged . G file can be read into 
Devguide (displayed in the new language) and the interface 
can be laid out accordingly. Once the new interface is laid out 
properly, it can be written out as a new. G file. This new file 
now contains the translated strings as well as the size and 
position information. This . G file is used to build the size and 
position database for a specified locale so applications can be 
shipped in local languages. Only one binary is needed; lo­
cale-specific databases are shipped for strings and, possibly, 
size and position information. 

285 



www.manaraa.com

Manage a Large User 
Interface 
Development Project 

Browse the Interface 

Utilize Code 
Generator Options 

286 

Devguide enables you to store the windows of your user in­
terface in separate interface files (. G files). This convention 
makes editing interface files simpler. If you want to edit or 
add an object in only one window, then you have to edit only 
one file. 

Devguide also enables you to define a project in which you 
incorporate separate interface ( . G) files into one large inter­
face. The Project Organizer Window presents a visual repre­
sentation of a project's contents (. G files). You can add, 
modify, or delete.G files from the project as needed. 

When you run the code generators for the project inter­
face, you will generate several_8 t Ub8 . c files, one for each 
of the interface files. The one Make f i 1 e that is produced will 
incorporate all the . G files of a project. 

Modifications to include application-specific code should 
only be incorporated into the _8 t ub8 . c files. Changes made 
in the _8 t ub8 . c files will be maintained and updated if you 
modify the user interface and rerun the code generators. 

Devguide also offers an interface browser that provides a hi­
erarchical graphical representation of the user interface. 
Used in conjunction with the new Project Organizer, the in­
terface browser enables you to view all or portions of the user 
interface. The interface browser is updated dynamically as 
you add to or modify the user interface. 

The interface browser also provides another quick means 
to modify portions of the user interface. For example, a de­
veloper can copy a control panel with all its control objects 
from one window to another, rather than copying the objects 
individually. 

Devguide provides the option to use one of three toolkit code 
generators. The GXV and GXV ++ code generators output C 
and C++ code for the XView toolkit. The GOLIT code gener­
ator outputs C code for the OLIT toolkit. The GNT code gen­
erator outputs C, C++, and PostScript code for the NeWS 
toolkit. For an in-depth discussion of toolkit options, see 
Choosing a Code Generator, below. 

There are also language code generators offered by Sun­
Soft language products and by third party vendors. 

The Devguide . G file stores the interface design following 
the GIL format. This format is documented in the User Man­
ual. Following this format, developers could write their own 
language or toolkit code generator. 

Chapter 50 Devguide - The Open Windows Go UoI. Builder 



www.manaraa.com

Connect Actions 
Between Interface 
Objects 

What Doesn't 
Devguide Do for 
You? 

5.4 
Choosing a Code 
Generator 

GXv,GXV++ 

5.4 Choosing a Code Generator 

In Devguide 3.0, you can connect an event generated on one 
element to an action occurring on another using the Connec­
tions window on the Properties menu. You can specify an 
element to be the source of the event and an element to be the 
target (the source and target elements may be the same), then 
specify the event you want to trigger the action and the action 
to occur. Devguide generates the toolkit code to connect the 
event and the action. 

A common example is to connect the pressing of a button 
to the appearance of a popup window. 

Devguide doesn't write your application for you - that is, it 
won't generate a text editor or spreadsheet application. 
Devguide also does not link your application with the user 
interface. You insert the application code into the _s tubs. c 
file, generated by one of Devguide's companion code gener­
ators. 

Devguide 3.0 has code generator support for all the OPEN 
LOOK toolkits provided by OpenWindows V3. Before de­
signing your user interface, you should select the toolkit you 
will eventually use: choose Devguide from the Devguide 
Properties menu and use the Toolkit pulldown menu to 
choose a toolkit. 

The XView code generators, GXV and GXV++, have been 
enhanced to take advantage of the new features of the XView 
environment, such as internationalization. In addition, there 
are two new code generators, GOLIT for the OPEN LOOK 
Intrinsics Toolkit (OLlT), and GNT for the NeWS Toolkit 
(TNT). 

Each code generator has been uniquely designed to take 
advantage of the strengths of its toolkit, and to address the 
needs of the developers using it. Hence the output of each 
code generator can best support its specific toolkit. 

Read this section to understand the design goal of each of 
the code generators and the issues to consider when using 
them. 

The Devguide GXV code generator produces C code and the 
GXV++ code generator produces c++ compliant C code for 
the XView toolkit. The generated code is much like code a 
programmer would write, therefore it is very readable. It is 
not "machine generated," or in a proprietary format that is 
difficult to decode and understand. 

The created files contain user interface code as well as 
some application-specific code, such as the code found in the 

287 



www.manaraa.com

288 

_5 t Ub5 . c file which contains the XView main loop with the 
stub call back procedures. Developers should only need to 
modify the _5 t ub5 . c file to add their own application-spe­
cific code. This file is maintained and updated whenever the 
developer modifies the user interface and regenerates the 
code. 

A code generator that generates real toolkit code for the 
application has both advantages and disadvantages. One of 
the advantages is that it generates real code that can be easily 
read, modified, and maintained. In fact, developers who are 
unfamiliar with the XView environment can actually use the 
generated code to learn about XView programming. 

The disadvantage is that the code generator can generate 
voluminous amounts of code. For example, GXV generates 
both executable code and resource data that grows in propor­
tion to the complexity of the user interface implementation. 
In an application that contains a large or intricate user inter­
face, the ui . c file can contain thousands of lines of code. This 
code, which is frequently only executed once during the user 
interface initialization, takes a long time to compile and cre­
ates a very large executable file. In addition, the user interface 
is not easily separated from the application, so dynamic 
modifications cannot be made to the user interface. 

Both GXV and GXV ++ support the internationalization 
(I18N) features of the XView environment, producing code 
that allows the resulting application binary to be localized. 
Two flags enable this feature: 

-g 
causes dgettext wrappers to be placed around all strings 
associated with the interface, allowing easy extraction of 
the text by the xgettext utility. xgettext produces a portable 
object file (.po file) that can be localized, compiled into a 
text database, and supplied at runtime. The localized da­
tabase string values will override the string values in the 
binary code, presenting the user with a localized version 
of the product. 

-r 
Devguide, by default, uses an absolute layout scheme for 
all user interface objects. This layout scheme can cause 
problems when the localized strings are not the same 
length as the original text strings (for example, buttons can 
overlap). The developer can use Devguide to relayout the 
user interface, using the new localized text strings, and 

Chapter 5. Devguide - The Open Windows G. U.I. Builder 



www.manaraa.com

GOLIT 

5.4 Choosing a Code Generator 

then set the -r flag to invoke the XView XV_USE_DB 

wrapper around object attributes associated with object 
size and positioning. This wrapper causes the application 
to check the resource database file for object size and po­
sition information when the localized application is run. 

Note - Devguide provides a group layout feature that elim­
inates the need to use the - r flag. Group layout allows for 
relative layout at runtime. The group layout is the preferred 
and recommended method to use for applications that will 
be localized. 

The Devguide GOLIT code generator for the OLIT toolkit 
provides an OLIT programmer with a fast and efficient 
method to implement a user interface. GOLIT generates "C" 
data structures, which define the user interface widget hier­
archy and their associated resources. This user interface is 
highly efficient, compact, and consistent-that is, a widget 
descriptor takes only 44 bytes plus the resources, create proc, 
and callbacks (per widget instance), regardless of the user 
interface object. GOLIT does not produce a lot of "one-time" 
code (initialization functions). An example of this would be 
a call such as XtCreateManagedWidget ( ). Instead, a 
small runtime component enumerates and instantiates this 
widget hierarchy when the application is initialized, thereby 
reducing the amount of executable code. 

The advantages of using GOLIT: 

• The executable code size does not vary with the com­
plexity of the user interface. 

• The description of a particular user interface object 
(called a widget) is highly efficient relative to the equiv­
alent hand-written C code. 

• The concise API to libgoli t provides the developer 
with a set of library functions that are easy to under­
stand and use. These functions allow the programmer 
greater flexibility in the manipulation and control of the 
instantiation of the user interface objects within the hi­
erarchy. 

• A clear separation between the user interface and appli­
cation code. 

• New customized "group widget." This widget was cre­
ated to support Devguide's sophisticated relative lay-

289 



www.manaraa.com

GNT 

290 

out mechanism. The group widget is subclassed off of 
the OLIT Manager widget and resides in the libgoli t 
runtime library. 

• Create procs-these are used to instantiate objects from 
their descriptors. A few examples of when you would 
use them are: 

o to provide additional resources at widget creation 

o to get a widget ID 

o to do a Set Val ues () on a widget just after creation 

o to access an internal widget 

o to support glyphs for user interface objects. 

An example of an internal widget is: attaching menu items 
(such as OblongBut tons) to a MenuButton Widget. Spec­
ify a create proc for the MenuBut ton widget and in the cre­
ate proc after instantiating the MenuBu t ton widget, retrieve 
the MenuPane widget with a call to GetVal ues ( ) and then 
attach menu items with the MenuPane widget as the parent. 

Use create procs the same way that you use any other call­
back. Create procs are not meant to be called from the appli­
cation code. 

• The source for 1 ibgo 1 i t is available. 
• Internationalization support in OLIT and GOLIT is 8-bit 

clean and supports use of the Compose key. 

The Devguide GNT code generator for the TNT toolkit fol­
lows the model of the GXV code generator for the XView en­
vironment in that it generates toolkit code. The TNT and 
NeWS environment have a fairly steep initial learning curve. 
Once that learning curve is topped, the benefits of the envi­
ronment can be fully utilized. GNT assists in completing that 
learning curve. It not only generates the user interface code, 
it also provides assistance to the developer learning the TNT 
and NeWS environments by providing example code. 

GNT opens the door to TNT and provides enhancements 
to the toolkit (for example, internationalization support and 
linking of controls). 

The GNT design allows for the following advantages and 
disadvantages: 

• Flexibility in the client-server split. Callbacks can be de­
fined as either client side or server (PostScript only). 

Chapter 5. Devguide - The Open Windows G.U.I. Builder 



www.manaraa.com

5.5 
Common 
Problems and 
Recommended 
Solutions 

• Incremental downloading of windows to the server. Us­
ing Devguide's project organization, GNT only down­
loads interface files that contain open windows. When 
a new window is requested, GNT checks to see if the 
interface has been downloaded, and, if required, down­
loads the interface (including all internationalization). 

• Subclassing of OPEN LOOK objects. For example, to re­
place a menu with a pie-shaped menu, turn on subclass­
ing, define the pie-shaped menu subclass, and GNT 
automatically utilizes the new subclass. 

• Minimizes the modifications that have to be made when 
the interface changes. The user interface consists of 
three separate files, of which only one is changed when 
the interface is modified. The other two files define sub­
classing and initialization routines and therefore do not 
need to be changed. 

• Control areas in "border bags" allow text or graphics 
panes to resize both vertically and horizontally. 

• Computes the layout of control objects so that the ob­
jects can move logically upon resize of the window. This 
scheme also allows string substitution for easy interna­
tionalization and localization. 

For more technical information on each of the code gener­
ators please refer to the Open Windows Developer's Guide 3.0 
User's Guide and the programmer's guide for each of the tool­
kit code generators included with the software. 

The following are common questions that arise for Devguide 
3.0: 

1. How do I attach a popup window to a button? 
You may want to press a button in one window and 
have a popup window appear on the screen. You can 
use Devguide to create both the button and the popup 
window by dragging and dropping the elements on 
the interface. 

To create the attachment, select the meta key in conjunc­
tion with the left mouse button and visually link (you will 
see a cord and electrical plug on the screen) the button with 
the popup window. The Devguide action-event Connections 
window appears, where you can link the notify action per­
formed on the button to the show action performed on the 
popup. The link is effective in test mode, so selecting the but­
ton will display the popup. When you run a code generator, 

5.5 Common Problems and Recommended Solutions 291 



www.manaraa.com

292 

it will generate the toolkit code that links the objects and ac­
tions. 

2. How do I build a menu? 
To create a menu, choose Menus from the Devguide 
Properties menu. This brings up the Menus property 
window. Press the Create button to create and name 
the menu. You can rename the menu by typing in the 
Object Name field. Choose the Insert button once for 
each menu item you want. Each item is called Item 
until you edit the Label field. 

Using the Connections window (choose Connections from 
the Devguide Properties menu), you can create callbacks for 
the menu and menu items by specifying the actions and 
events you want to attach to the menu or menu items. 

3. How do I change the fonts in my application built by 
Devguide? 
The OPEN LOOK specification restricts the way you 
can use fonts. All items in a single control area have to 
use the same font. Items in a menu or scrolling list can 
be in different fonts. For scrolling lists you need to set 
the font on every item in the list when you insert it: 

font (Xv_font) xv_find (control_area, FONT 

NULL) ; 

PANEL_LIST_STRING, row, "String here", 

Chapter 5. Devguide - The Open Windows G.U.I. Builder 



www.manaraa.com

For more information on fonts, see Chapter 16 of the 
XView Programming Manual written by Dan Heller and pub­
lished by O'Reilly & Associates, Inc. 

4. How do I group and anchor objects? 
For example, you might have a set of three buttons 
that you want to be equally spaced apart in a horizon­
tal row. First, create the three buttons. Next, select all 
three buttons. Choose Group from Devguide's Ar­
range menu. Next, choose Groups from Devguide's 
Properties window to bring up the Groups property 
window. Specify the row layout option, the centered 
horizontal option, and you'll notice that a lO-pixel 
separation is the default spacing. Then select Apply. 
The group you create lays out the buttons according 
to the rules you specify. The first button is kept in its 
current position, the second is placed 10 pixels to the 
right of the first, vertically centered, and so on. 

As another example, consider the Apply and Reset but­
tons that appear at the bottom of most OPEN LOOK property 
windows. Use the anchoring facility to center these buttons 
as they should appear. Create a group consisting of the two 
buttons. Choose the South point of the group's bounding box 
as the reference point. (A group's bounding box includes 
nine compass points. South is the group's bottom center 
point.) Choose the South point on the panel as the anchor 
point. Choose the control area as the anchor object. 

A good example of using groups to support dynamic re­
size behavior is the file chooser, also available in 1 ibgui­
dexv. 

5. How do I grayout items in a menu? 
One way is to set up a notify handler for that menu or 
menu item. Inside that, have a condition in the 
MENU_DISPLAY case that sets the item active or inac­
tive as appropriate for the current state; for example, 
the Copy menu item on the Edit menu, as shown be­
low: 

5.5 Common Problems and Recommended Solutions 293 



www.manaraa.com

5.6 

/* 

* Menu handler for 'edit_menu (Copy)'. 

*/ 

copy_menu_handler(item, op) 

item; 

Menu_generate op; 

switch (op) { 

case MENU_DISPLAY: 

/* Find out if anything is selected ... */ 

if (items_selected) 

xv_set (item, MENU_INACTIVE, FALSE, NULL); 

else 

xv_set (item, MENU_INACTIVE, TRUE, NULL); 

break; 

case MENU_NOTIFY: 

break; 

6. How do I include my own objects (such as a triangu­
lar-shaped button) in my application? (Devguide 
doesn't provide the object, yet my users expect the ob­
ject.) 

Except for putting a glyph inside the existing OPEN LOOK 
button that XView implements, this is not yet possible. 

Similar Products 
A user interface builder is sometimes grouped logically with 
user interface management systems (UIMS's) and user inter­
face prototypers. Each of these user interface programs pro­
vides unique features, however, that meet different people's 
needs. 

294 Chapter 5. Devguide - The Open Windows G.U.I. Builder 



www.manaraa.com

What is a User 
Interface Builder? 

What is a User 
Interface 
Management System 
(UIMS)? 

5.6 Similar Products 

A user interface builder enables developers to layout graph­
ically the design of a user interface. It also generates the win­
dow system toolkit or language code that defines the 
interface. 

A developer designs the user interface on a computer 
screen by selecting user interface elements from a palette and 
moving them to desired locations on the prototype applica­
tion. The elements can be sized, positioned, colored, and laid 
out exactly to the designer's liking. 

A user interface builder sometimes enables a developer to 
define specific relationships of objects to objects, or objects to 
actions (such as using a button to bring up a popup window). 
A user interface builder does more than just define the look; 
it can define relationships between elements. 

When the design is finished, the user saves a description 
of the interface elements and invokes a program to generate 
code for the desired window system toolkit. 

The developer then has to "fill in the blanks," specifying 
how the application interacts with the user interface by writ­
ing the necessary code. 

Besides Devguide, some examples of user interface build­
ers are ExoCODE™ from Expert Object Corporation, Builder 
XcessoryTM from ICS, Xbuild™ from Nixdorf, and UIM~ 
from Visual Edge Software. 

A UIMS is a system for designing user interfaces that ab­
stracts the user interface design from an application, then 
provides a dialog mechanism (often a separate language) for 
linking the user interface with the application. A UIMS typi­
cally includes a user interface builder as part of the product. 
In other words, a UIMS is a superset of a user interface 
builder. 

With a UIMS, a designer separately specifies what a user 
interface looks like, how the user interacts with the elements 
it contains, how the elements interact with each other, and 
how the user interface and the application communicate. 

The primary advantage to using a UIMS is to keep the ap­
plication and user interface separate from one another. Also, 
you could make changes to the user interface without having 
to recompile the underlying application. 

A couple of other advantages of a UIMS are the ability to 
internationalize your user interface and to create a user-cus­
tomizable user interface. 

295 



www.manaraa.com

What is a User 
Interface Prototyper? 

5.7 
Conclusion 

296 

Some examples of UIMSs are TeleUSE from TeleSoft, and 
Interviews from Stanford University. 

A user interface prototyper is a tool for mocking up the 
screen appearance of an application. You can quickly and 
easily build user interface elements on the screen, adjusting 
properties such as their location, size, and color. The major 
feature of a prototyper is the ease with which you can play 
with, test, and change the objects in the interface. 

Some prototypers generate only pseudo-code and some 
produce real, compilable code. If you use a prototyper that 
generates pseudo-code, you'll know exactly what you want 
your interface to look like, but you'll have to start from 
scratch to produce the actual, executable code for it. In con­
trast, Devguide produces real application toolkit code. 

Devguide is a useful tool for laying out user interface ele­
ments and for generating source code for these elements. 
Devguide shortens software development time, enables 
quick porting of applications from other hardware plat­
forms, and facilitates the creation of quality user interfaces. 
Devguide eases the tasks of internationalizing and localizing 
applications by automating string translation and configura­
tion, and by enabling the designer to group objects and lay 
them out relative to one another. 

Chapter 5. Devguide - The Open Windows G.U.I. Builder 



www.manaraa.com

CHAPTER 6 
Integrating Applications on the 
Sun Desktop 

6.1 
Introduction 

Desktop integration is the name given to a suite of technolo­
gies that allow seamless cooperation and interoperability be­
tween applications on the desktop. Desktop integration 
allows the following: 

• Users can select data from one application, and drop it 
into a different application without regard to format. 

• A data object on the desktop can be dragged to the Print 
Tool where it will be printed in the appropriate format. 

• A user can attach an icon representing a desktop pub­
lishing file to a mail message. The message receiver 
could then open the document into the desktop publish­
ing application by simply double-clicking the icon. 

• Groupware. Applications can be developed that allow 
several people to work simultaneously on a document 
or program while the system automatically performs 
the various housekeeping chores such as updating files 
on the fly and informing other users of file changes. 

Desktop integration lets applications share information 
and processes with other applications. This sharing results in 
a higher degree of communication, cooperation, and soft­
ware productivity. 



www.manaraa.com

6.1.1 
UNIX Evolution 

UNIX: 

UNIX 
Powerful OS with a cryptic 
command structure and non-
intuitIve user interface. 

Operating Systems: 

Text-based Operating 
Systems 

(MS-DOse, CPJMe, UNIX) 

298 

The guide is written for independent software vendors 
who have previous window programming experience, and 
who wish to integrate their applications with other applica­
tions on the SunSoft desktop. This guide presents an over­
view of desktop integration and its constituent technologies, 
selections and drag and drop, the Classing Engine, and 
ToolTalk services. 

Open Windows desktop integration represents an evolution­
ary step in the growth and maturation of the UNIX® operat­
ing system. Although UNIX itself is an extremely powerful 
operating system, its command line interface is nonintuitive, 
cryptic, and difficult for most users to master. In recent years 
the UNIX command line interface has been supplanted by: 
windowing systems interfaces such as the OPEN LOOK™ 
graphical user interface, which provides a simpler and more 
intuitive way to control the system. By the end of 1990, there 
were more than 1000 OPEN LOOK applications programs 
offered by over 100 vendors. 

Software Evolution 

OPEN LOOK OpenWindows 
The power of UNIX with a --- The power of UNIX, the ease 
simple and intuitive graph- . of OPEN LOOK, cooperation 
ical user interface. and interoperability between 

applicatiOns. 

Graphical Operating Integrated Graphical 
Syat ... . Operating Systems . -

(AppleOse. M8-WindowallM)05 (UNIXIOpenWindows) 
OPEN LOOK) 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

6.1.2 
SunSoft's 
Desktop 
Integration 
Technologies 

Selections and Drag 
and Drop 

Application 

Although OPEN LOOK greatly increases the usability of 
UNIX, there are some limitations to the graphical interface: 
pathnames and other elements of command line UNIX still 
need to be manually specified on occasion. Furthermore, 
data exchange is severely limited by incompatible file for­
mats, and cannot always be performed on files, folders, or 
other large units of data. 

To move from the existing windowed user interface to a fully 
integrated desktop, the following enhancements are needed: 

• A mechanism to provide a user-directed flow of infor­
mation from one application to another. (Selections and 
drag and drop) 

• A method for applications to determine the identity and 
operating characteristics of objects on the desktop. 
(Classing Engine) 

• A mechanism for passing messages and commands be­
tween applications. (ToolTalk service) 

These enhancements are the sum of three distinct technol­
ogies: selections and drag and drop, the Classing Engine, and 
the ToolTalk service. Together these OpenWindows technol­
ogies provide the desktop with a powerful cohesiveness and 
data interchangeability between applications. 

These technologies allow users to exchange data between or 
within applications with a mouse. The user need not be con­
cerned with the subtleties of moving data between applica­
tions, such as the data's format, or whether data translation 
is required. All of this is handled by the drag and drop API. 
Selections are covered in Section 6.2. Drag and drop is dis­
cussed in Section 6.3. 

Drag and drop can move data within an application. For ex­
ample, a user can rearrange a text file by selecting text, drag­
ging the text to a new position, and dropping (inserting) the 
text at that position. 

Drag and drop can also move data between applications. 
An example of this would be copying data from Mail Tool 
and dropping it into a desktop publisher. Another example 
is copying an appointment from a mail message and drop­
ping it onto Calendar Manager where it is properly entered. 

6.1.2 SunSoft's Desktop Integration Technologies 299 



www.manaraa.com

Implementation 

Classing Engine 

Application 

300 

Selections and drag and drop provide a communications link 
between an owner client (the client that owns the data) and a 
requestor client (the client that receives the data). All data 
transferred through selections and drag and drop is trans­
ferred through the X-server. Each toolkit (XView IOLlT I 
TNT) provides a selections and drag and drop API. Though 
the APIs for each toolkit are somewhat different, selection 
between the toolkits is seamless and invisible. 

The Classing Engine identifies the characteristics, or at­
tributes, of desktop objects. In other words, the Classing En­
gine stores attributes such as print method, icons, and file 
opening commands of desktop objects. 

If an application is to interoperate with other objects, the 
application must be able to identify those objects and deter­
mine their various operation characteristics. That is, if the ob­
ject is another application, can they intercommunicate? If the 
object is a file, can the application read it? Every object on the 
desktop must be readily identifiable-is it an ASCII file, a Sun­
Soft DeskSet tool, a spreadsheet program, a spreadsheet data 
file, etc. The Classing engine provides a database for storing 
this information, and an API to access the information. Ap­
plications query the Classing Engine database to determine 
an object's type and the attributes associated with that object. 
The Classing Engine is discussed in Section 6.4. 

File Manager, a DeskSet application shipped with OpenWin­
dows, provides the best example of using the Classing En­
gine. File Manager graphically displays a UNIX file system 
as a set of folders (directories) and documents (files). Users 
can move, copy, and rearrange files by dragging and drop­
ping file icons into directory icons. Files may be deleted by 
dropping icons into the waste basket icon. File Manager also 
uses information in the Classing Engine to allow users to 
double click on a file icon and open the file with its associated 
application. For example, double clicking on a spreadsheet 
data file icon opens the file into the spreadsheet program. 
Double clicking a desktop publishing file opens the file into 
the correct desktop publishing application. Using print in­
structions from the Classing Engine, File Manager also al­
lows users to print a data file by dragging and dropping it on 
the Print Tool. 

Another feature of File Manager is that different file types 
are represented by different icons. Thus, one application's 
file will have one type of icon, and another application will 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

ToolTalk Service 

Application Example 

have a different icon. again, the Classing Engine provides 
File Manager with the icon display information. 

As explained earlier in this book, the ToolTalk service is used 
by independent applications to communicate with each 
other without having direct knowledge of each other. Appli­
cations communicate by creating and sending ToolTalk mes­
sages. The ToolTalk service receives these messages, deter­
mines the recipients, and then delivers the messages to the 
appropriate applications. 

To use ToolTalk on your application, you must first specify 
an existing message protocol. A message protocol is a set of 
ToolTalk messages that describe operations that applications 
agree to perform. By adopting a message protocol, applica­
tions can thus speak the same ToolTalk language. The mes­
sage protocol specification includes the set of messages, as 
well as how applications will behave when they receive the 
messages. Refer to the first part of this book for further details 
on ToolTalk. Refer to Appendix D, "DeskSet Defined 
ToolTalk Messages," for a discussion on the DeskSet message 
protocol. 

In computer-aided software environments (CASE), the 
ToolTalk service provides a way to connect and coordinate 
individual programs in a programming environment. For 
this scenario, a tool manager, graphical debugger, call gra­
pher, editor, and source browser are all tools used in this 
ToolTalk-based developer's environment. These tools have 
been modified to use the ToolTalk service and implement the 
messages shown in Table 6.1.1. 

Table 6.1.1. CASE message protocol. 

Message Description 

Started Informs tool manager that this tool is started. 

Stopped Informs tool manager that this tool is stopped. 

Launch Requests a certain tool to start. 

Quit Requests a certain tool to stop. 

Display Requests that a tool that can edit a file load the file and scroll the file to 
a particular line number. 

CallGraphFunction Requests that a tool that can graph calls display the graph for this 
function in this file that is part of this program. 

6.1.2 SunSoft's Desktop Integration Technologies 301 



www.manaraa.com

Message 

GetSelection 

302 

Description 

Requests that the tool with the current selection return the file name 
and line number. 

To determine what's causing a particular error message, a 
programmer starts the tool manager, a program used to co­
ordinate the development tools in the environment. From the 
tool manager, the programmer double-clicks on the source 
browser and graphical debugger icons to start them. The tool 
manager sends a Launch message to each tool and as they 
start, they send a Started message to the tool manager with 
initialization information. 

The programmer loads a source code file in the source 
browser and finds out where the error message is located in 
the source code. After selecting the text of the error message, 
the programmer moves to graphical debugger and selects a 
"Set BreakPoint" menu item. The debugger sends a GetSelec­
tion message to the tools currently running in the environ­
ment (in this case, just the source browser.) The source 
browser returns the file name and line number and the de­
bugger loads the file, moves to the line number, and sets the 
breakpoint. 

The programmer then runs the program and locates the 
call that results in the error message. A feature of the debug­
ger is the menu item, "Show Call Graph". After this menu 
item is selected, the debugger send a CallGraphFunction 
message. ToolTalk starts up the installed call grapher if one 
isn't already running and delivers the message. 

The call grapher loads the call graph for the specified file 
and scrolls to the specified function. The programmer sees a 
sibling function that looks suspicious that's called just before 
the function producing the error. The programmer double­
clicks on the sibling function and the call grapher sends a 
Display message. 

The ToolTalk service starts an editor and delivers the Dis­
play message. The editor loads the file and scrolls to the spec­
ified line number where the engineer discovers an error. 
After fixing the error, the programmer needs to stop work 
and using the tool manager, asks that all tools be shut down. 
The tool manager sends Quit messages to all tools that are 
currently running. The tools clean up, send a reply to the Quit 
message, and exit. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

6.1.3 
ISV Registration 

6.1.3 ISV Registration 

Maximum desktop integration requires public notice of ap­
plication data types, naming conventions, custom icon de­
sign and ToolTalk message protocols. By making this 
information public, ISVs can be sure thatiheir applications 
and data files are recognized by other applications. SunSoft 
provides a vehicle for making this information public 
through the Vendor Data Type Registration program. Inde­
pendent software vendors can register the data type informa­
tion for their applications with SunSoft. This information will 
be made available to other ISVs through the SunSoft SUC­
CESS database, an on-line electronic support service for soft­
ware developers. Refer to Appendix C, "Vendor Data Type 
Registration," for details. 

303 



www.manaraa.com

6.2 
Selections 

304 

Selections are a mechanism for moving data between or 
within on-screen applications. Drag and drop, and the CUT, 
COPY, and PASTE command keys are two examples of how 
selections are used. The term selection refers to the way the 
user highlights an object, such as a block of text, a file icon, 
or a window, for moving or copying. 

Selections are often used to move text. For instance, sup­
pose you want to move a sentence from one location to an­
other location. 

1. Make the selection. Use the mouse to place the insert 
point at the start of the sentence and momentarily 
press the SELECT mouse button. Move the pointer to 
the end of the sentence and press the ADJUST mouse 
button; the selection will be highlighted in reverse vid­
eo.1 

2. Store the selection. Press the CUT key on the keyboard 
to temporarily store the selection in the clipboard. 

3. Insert the data. Use the mouse to place the insert point 
at the desired location. Insert the text by pressing the 
PASTE key. 

Selections provide a communications link between a 
holder client (the client which owns the data) and a requestor 
client (the client that receives the data). All data transferred 
through selections is transferred through the X-server. Each 
toolkit (XView IOLlT ITNT) provides a selections API. Al­
though the API for each toolkit are somewhat different, se­
lections between the toolkits are seamless and invisible. 

1. Another selection method is to place the insert point at the beginning of 
the sentence, press the SELECT mouse button and hold it down as you 
"wipe" across the text to the end of the sentence, then release the button. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

6.2.1 
Selections Outline 

Selection Owner 

6.2.1 Selections Outline 

User interface conventions for selections are outlined in 
the OPEN LOOK CUI Functional Specification. For further se­
lections programming instructions, refer to the XView Pro­
gramming Manual and XView Reference Manual from O'Reilly 
and Associates, The NeWS Toolkit 3.0 Reference Manual from 
SunSoft, and The X Window System Programming and Appli­
cations with Xt, OPEN LOOK Edition from Prentice Hall. 
These documents are provided with the Open Windows Ver­
sion 3 Release. 

XView and aLIT selection examples are at $OPENWIN­
HOME/share/src/dig_samples/olit_sel.cand 
xview_sel. c. 

Selections provide a well-defined method of implementing 
the COPY and PASTE keys. The following outline describes 
the generic steps for implementing the COPY and PASTE 
with any of the Open Windows toolkits. 

Selections communicate between an owner client and a 
requestor client. The owner client has the data representing 
the value of the selection. The requestor client desires the 
value that the selection provides. Selection code is required 
for both the owner and requestor clients. Refer to the Inter­
Client Communications Conventions Manual (ICCCM) for a 
detailed discussion of the selections protocol. 

1. Mark Selection 
Visual feedback of the selected object should be provided 

to the user. For example, the selection can be shown by dis­
playing the selected text in reverse video. 

2. Make Selection 
When the user presses the COPY key, create a selection 

holder and set the other attributes required by the applica­
tion. 

Note that a conversion procedure must be written to han­
dle conversion requests from the selection requestor. The re­
quest for text is handled automatically. 

3. Associate Data 
Associate selection (highlighted text) with the owner cli­

ent. If the selection is currently owned, the owner receives an 
event and is expected to do the following: 

305 



www.manaraa.com

Selection Requestor 

6.2.2 
Implementing 
Selections with 
DeskSet 

306 

• Convert the contents of the selection to the requested 
data type 

• Place this data in the named property on the named 
window 

• Send the requestor an event to let it know the property 
is available. 

1. PASTE Event 
The event handler must detect the PASTE event, so that the 
PASTE operation (selection request) can be initiated. 

2. Request Data 
Request data from the owner client. Post a request to get data 
from the selection owner. The owner has the data represent­
ing the value of its selection, and the requestor client wishing 
to obtain the value of a selection provides: 

• The name of the selection 
• The name of a property 
• Awindow 
• An atom representing the data type required. 

Call the SunSoft Catalyst Information Center (see Appendix 
C, "Vendor Data Type Registration,") for information on the 
selection protocol for DeskSet. Note, however, that ICCCM 
currently does not specify the protocol supported by Desk­
Set. The current DeskSet selection protocol may change to 
comply with future ICCCM specifications. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

6.3 
Drag and Drop 

6.3 Drag and Drop 

Drag and drop is an implementation of selections which al­
lows users to select a data object (text block, graphic, audio 
object, file icon, etc.) with the mouse, drag it across the screen, 
and drop it into another application for usage. For example, 
a text file icon can be selected, dragged to the Print Tool, and 
dropped, where it is printed. Another example would be 
dropping a spreadsheet data file onto a spreadsheet applica­
tion icon where it will be loaded and displayed on the screen. 
Note that drag and drop differs from the CUT, COPY, and 
PASTE command keys in that it is not limited to moving only 
text blocks, but can move complete data objects. 

Applications that implement drag and drop can exchange 
data with other applications. Drag and drop, like selections, 
has a different API for the XView, TNT, and OLIT toolkits. 
Once implemented in a client, however, drag and drop works 
invisibly and seamlessly among all three toolkits. 

This chapter discusses the following: 

• Drag and drop user interface 
• The steps required to implement drag and drop in one 

of the three toolkits 
• A detailed example of drag and drop as implemented in 

the XView environment. 

For further drag and drop programming instructions, re­
fer to the XView Programming Manual and XView Reference 
Manual from O'Reilly and Associates, The NeWS Toolkit 3.0 
Reference Manual from SunSoft, and The X Window System 
Programming and Applications with Xt, OPEN LOOK Edition 
from Prentice Hall. These documents are provided with the 
Open Windows Version 3 Release. 

307 



www.manaraa.com

6.3.1 
Drag and Drop 
User Interface 

Overview 

308 

To implement drag and drop, you must understand the drag 
and drop user interface. This section briefly describes this in­
terface for purposes of terminology. Refer to Appendix A, 
"Drag and Drop User Interface Specification" for descrip­
tions of: 

• the kinds of objects that can be dragged 
• the meanings of dropping objects on specific locations 

(such as on a window header, on a pane in a window, or 
on a drag and drop target) 

• the differences between dragging with and without the 
DUPLICATE modifier key held down 

• the visual feedback associated with the stages of drag 
and drop operation 

• how the process of data translation appears to users 
• how users can cancel drag operations in progress, and 

undo completed drag operations 
• how error messages are presented to users. 

Drag and drop allows users to transfer data objects using the 
mouse among or within applications. A drag and drop action 
consists of a source (object to be transferred), and a destination 
(the place where the source will be dropped). Before an object 
can be dragged or dropped, it must be selected. There are two 
types of objects that can be selected: a data span or glyph. A 
data span is a segment of on-screen data. It can be a segment 
of text, digitized audio, video, and so forth. A glyph is an on­
screen representation of some object, such as a file, applica­
tion, or directory. 

A data span can be selected in three ways: the wipe 
method, the select-adjust method, and the multi-click 
method. With the wipe method you place the pointer at the 
beginning of the data span, press the SELECT button, drag 
the mouse to the end of the selection, and release the mouse. 
In the select-adjust method, you place the pointer at the be­
ginning of the selection and click the SELECT button to select 
the starting point. Then you move the pointer to the end of 
the desired span and click the ADJUST button on the mouse 
to make the selection. With the multi-click method you rap­
idly press the SELECT button to select increasingly larger 
segments of the segment. For example, two rapid clicks se­
lects a word, three a line, and four a paragraph. A selected 
data span is displayed in reverse video. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

Initiating the Drag 

Visual Feedback 

The Drop 

6.3.2 . 
Implementing 
Drag and Drop 
Sourcing a Drag 

6.3.2 Implementing Drag and Drop 

Glyphs are selected by simply clicking the SELECT button 
on the glyph. To select additional glyphs, click ADJUST on 
additional glyphs. 

Drag and drop can be initiated as either a cut-and-paste or a 
copy-and-paste operation. In a cut-and-paste operation. the 
original object is deleted after it is dropped. In a copy-and­
paste operation, the original object remains after the object is 
dropped on a destination--the original object is not deleted. 

Drag and drop requires visual feedback to inform the user of 
the status of the drag. At a minimum, once an object is se­
lected, the pointer should change appearance and a represen­
tation of the object should follow the pointer as the mouse is 
moved. In addition, the pointer should indicate the receptiv­
ity of potential drop sites. The drag and drop specification 
includes details about changes in pointer appearance and 
other visual feedback associated with drag operations. 

The final action in the drag and drop gesture is to drag the 
selection over the destination object and release the SELECT 
mouse button. The destination is determined by the position 
of the pointer's hot spot at the time the user releases the SE­
LECT button. 

Applications supporting drops other than a simple cut or 
copy sometimes require a specific drop site, referred to as a 
drag and drop target. A drag and drop target is a graphical 
element located in the control area of an open window. In 
addition to serving as the destination in drag and drop oper­
ations, drag and drop targets sometimes contain a glyph 
which can be used as the source in a drag and drop operation. 

The following sections summarize the toolkit independent 
processes required for sourcing drags and receiving drops. 

To adapt an application to source a drag, the following steps 
are required: 

1. Define a drag and drop object and associate a drag 
pointer with it. The window manager will use the drag 
pointer to provide visual feedback to the user when 
the object is selected. 

309 



www.manaraa.com

Receiving a Drop 

6.3.3 
Drag and Drop 
Programming 
Example: XView 
Toolkit 

310 

2. Associate a selection with your drag and drop object 
that will contain the data you want to make available 
to the target. 

3. Provide an event callback procedure for your drag and 
drop object that will detect when it has been dragged. 
Set the actual data in the data object for the source to 
retrieve, and wait for a source response or error con­
dition. 

Depending on the application, you may also want to perform 
the following: 

4. Define a section conversion procedure for your own 
data types. 

5. Provide the data through an alternate transport mech­
anism (ATM), such as sockets or the ToolTalk service. 

To adapt your application to receive drops, the following 
steps are required: 

1. Define a drop site and associate an event procedure 
with it. 

2. (Optional) Provide an image for drop site previewing 
which will provide visual feedback when the pointer 
is over the drop site. 

3. In your event callback procedure, determine the event 
type and obtain data from the source selection. 

Depending on the application, you may also need to do 
the following: 

4. Provide drop site feedback when pointer enters and 
leaves the drop site. 

5. Use and alternate transport method (ATM) such as 
sockets or the ToolTalk service to transfer data if your 
application design requires it. 

This program, $OPENWINHOME I share I src I dig_sam­
ples/sview_dnd. c, illustrates the use of drag and drop 
using the XView toolkit. When the program is executed, it 
opens a text window with a drag and drop target. Users may 
drag any text file from the file manager and drop it on the 
windows drop site. The text will be displayed in the text pane 
and the filename path will appear in the window header. The 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

Overview of the 
Functions 

Opening 
Declarations 

file can also be imported by entering the filename in the win­
dow header. 

The document can be exported by dragging the drag and 
drop target to another window. A portion of the text can be 
moved by selecting the desired text and dropping it at a spe­
cific insert point. An OLIT example can be found at $OPEN­
WINHOME/share/src/dig_samples/olit_dnd.c. 

mainO 

create_user_interfaceO 

DnD_initO 

drop_procO 

get_primary _selectionO 

CallsDnD _initOand create_ 
user_interface 

Creates the frame and text 
window 

Crates drop site & drag object 

Event callback procedure; the 
event procedure for the drop 

Called from drop_procO; gets 
the data from the source. 

load_file_procO Event callback procedure; 
callback that displays the file 
name on the panel. 

The program begins with a comment giving the correct com­
pile command. The compiler includes directives, and the glo­
bal object definitions. Note that the header file dragdrop. h 
is only distributed with Open Windows Version 3. 

Four data types are defined: 

Frame 

Panel 

Textsw 

Panel_item 

Pointer to opaque structure 
defining the frame 

Pointer to opaque structure 
defining the panel 

Pointer to opaque structure 
defining the text subwindow 

Pointer to opaque structure 
defining a panel item (the 
load_file prompt) 

A structure with two members (atom and *name) is declared 
to store three server atoms. It is initialized with zeros at this 
time. Actual server atom values will be loaded during the 
initialization (in the DnD_ini t () function called later). 
Note that the structure does not have a formal name de-

6.3.3 Drag and Drop Programming Example: XView Toolkit 311 



www.manaraa.com

312 

clared. A formal structure name is not required when a struc­
ture is declared if the storage is allocated at the same time. 

/* 
* dnd_dig_sample.c 
* compile: cc -I$OPENWINHOME/include dig_dnd_sample.c -lxview -lolgx -lXll 
*/ 

#include <xview/xview.h> 
#include <xview/panel.h> 
#include <xview/text sw.h> 
#include <xview/dragdrop.h> 
#include <xview/xv_xrect.h> 

Frame 
Panel 
Textsw 
Panel item 

frame; 
panel; 
textsw; 
load_file; 

#define FILE_NAME_ATOM 0 
#define SUN_AVAILABLE_TYPES ATOM 1 
#define XA_STRING_ATOM 2 
#define TOTAL_ATOMS 3 

struct 

Atom atom; 
char *name; 

atom_list [TOTAL_ATOMSl 

{O, "FILE_NAME"}, 
{O, "_SUN_AVAILABLE_TYPES" } , 
{O, "XA_STRING"},}; 

/*Global Object definitions */ 

/* The drag object */ 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

Function: MainO 

maln (arge, argv) 
int arge; ehar *argv[); 

Xv_Server server; 

The program's main function is straightforward. Two func­
tions without return values, create_user_interface ( ) 
and DnD_ini t ( ) ,are declared. The xv _ini t ( ) procedure 
establishes connections with the X server, initializes the No­
tifier, reads the -/ .Xdefaults database and reads any 
passed arguments. 

The program then calls the two functions: create_ 
user_interface () creates the frame, the panel, and the 
text sub window; DnD_ini t () creates the drop site and the 
drag object. 

Finally, xv_main_loop () is executed, telling the Noti­
fier to start dispatching events. 

void ereate_user_interfaee(), Dnd_init() 
server = xv_init (XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL) 
create_user_interfaee() ; 
Dnd_init (server) ; xv_main_loop (frame) 

Function: create_ 
user _interfaceO 

The create_user_interface () function, called from 
main () ,uses the xv_create () procedure call to create 
the frame, the panel, the panel text (the file name prompt), 
and the text subwindow where the file is displayed. Notice 
that the xv_create () procedure with the load_file han­
dIe that creates the "Filename:" prompt also registers the 
load_fileJ)roc () function with the Notifier. 

6.3.3 Drag and Drop Programming Example: XView Toolkit 313 



www.manaraa.com

/* create_user_interface: Create the user interface components. */ 

void 
create_user_interface() 
{ 

Panel_setting load_file-proc() 
frame = xv_create (NULL, FRAME, 

XV_LABEL, 

panel 

XV_WIDTH, 
XV_HEIGHT, 
FRAME_SHOW __ FOOTER, 
NULL) ; 

xv_create (frame, PANEL, 
XV_X, 
XV_Y, 
XV_WIDTH, 
XV_HEIGHT, 
NULL) ; 

"Drag-n-Drop Demo", 
600, 
300, 
TRUE, 

0, 
0, 
WIN_EXTEND_TO_EDGE, 
50, 

load_file xv_create (panel, PANEL_TEXT, 
PANEL_VALUE_DI S PLAY_LENGTH , 45, 
PANEL_VALUE_STORED_LENGHT, 80, 
PANEL_LABEL_STRING, "Filename:", 
PANEL_LAYOUT, PANEL_HORIZONTAL 
PANEL_READ_ONLY, FALSE, 
PANEL_NOTIFY_PROC, load_file-proc, 
NULL) 

textsw xv_create (frame, TEXTSW, 
WIN_BELOW, 
XV __ WIDTH, 
XV_HEIGHT, 
NULL) ; 

panel, 
WIN_EXTEND_TO_EDGE, 
WIN_EXTEND_TO_EDGE, 

Function: Dnd_init() The Dnd_ini t () function creates the drag and drop target 
as well as the drag and drop target "busy" glyph. The for 
loop gets the three server atoms and loads them into the 
structure (which was declared in the global object definitions 
atthe beginning of the program). Note thatthe last xv _cre­
ate () procedure registers the dropJ)roc () function with 
the Notifier. 

314 Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

/* DnD_init: Create a drop site, and a drag object. */ 

void 
DnD_init (server) 
Xv_Server server; 

Xv_drop_site drop_site; 
Xv_opaque drop_glyph; 
Xv_opaque busy_glyph; 

static unsigned short drop_icon [] 
#include udrop_site.icon u 

} ; 

static unsigned short busy_icon [] 
#include Ubusy_site.icon u 

} ; 

int i; 

for (i = 0; i < TOTAL_ATOMS; i++) 

atom_list [i] .atom = xv_get (server, 
SERVER_ATOM, 
atom_list [i] .name); 

drag_object = xv_create (panel, DRAGDROP, NULL); 

drop_glyph = xv_create (XV_NULL, SERVER_IMAGE, 
SERVER_IMAGE_BITS drop_icon, 
SERVER_IMAGE_DEPTH, 
XV_WIDTH, 
XV_HEIGHT, 
NULL) ; 

SERVER_IMAGE_BITS, 
SERVER_I MAGE_DEPTH , 
XV_WIDTH, 
XV_HEIGHT, 
NULL) ; 

xv_create (panel, PANEL_DROP_TARGET, 
PANEL_DROP_DND, 
PANEL_DROP_GLYPH, 
PANEL_DROP_BUSY_GLYPH, 
PANEL_NOTIFY_PROC, 
PANEL_DROP_FULL, 
NULL) ; 

1, 
32, 
32, 

busy_icon, 
1, 
32, 
32, 

drag_object, 
drop_glyph, 
busy_glyph, 
drop-proc, 
TRUE, 



www.manaraa.com

Function: drop -proc() 

316 

The drop-proc () routine is the event callback procedure 
that initiates the drag and drop operation. If the operation is 
a drag, the case statement handles it either as a move or a 
copy. If the operation is a drag from the drag and drop target, 
the third case statement (LOC_DRAG) is used. This code de­
termines whether the filename or the data string is passed. 

This first xv_create () associates the selection targets 
with a corresponding selection atom. The second xv_cre­
ate () will determine if a filename is being passed, and the 
third, if the text string is to be passed. In addition, the mes­
sage "Start dragging" is printed in the lower left of the frame. 
Notice that the argument lists of xv_create () and xv_ 
set () are variable length and must be terminated with 
NULL statements. 

The create_user_interface () function, described 
earlier, registers drop_proc () with the Notifier. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

/* drop-proc: Set up the drag operation and handle the drop. */ 

void 
drop-proc(item, value, event) 
Xv_opaque item; 
unsigned int value; 
Event *event; 

long length; 
int format; 
char *sel_string; 
Selection_requestor 
char 
int 
Atom 

sel_req; 
*buff; 
txt_len; 
list[4]; 

static void get-primary_selection() ; 

printf(llsel_req = %X/nll, sel_req); 
switch(event_action(event)) 
{ 

case ACTION_DRAG_MOVE: /* they are moving the object */ 
printf(lldrag move\n ll ); 
get-primary_selection (sel_req); 
break; 

case ACTION DRAG_COPY: /* they are copying the object */ 
printf (lldrag copy\nll); 
get-primary_selection (sel_req); 
break; 

case LOC DRAG: 
list [0 ] atom_list [_SUN_AVAILABLE_TIMES_ATOM] .atom; 
list [1] atom_list [FILE_NAME_ATOM] .atom; 
list [2] atom_list [XA_STRING_ATOM] .atom; 
list [3] NULL; 

6.3.3 Drag and Drop Programming Example: XView Toolkit 317 



www.manaraa.com

list, 
32, 
4, 

SEL_DATA, 
SEL_FORMAT, 
SEL_LENGTH, 
SEL_TYPE, 
SEL_OWN, 
NULL) ; 

atom_list [_SUN_AVAILABLE_TYPES_ATO Ml.atom, 
TRUE, 

string = (char *) xv_get (load_file, PANEL_VALUE); 

xv_create (drag_object, SELECTION_ITEM, 
SEL_DATA, string, 
SEL_FORMAT, 
SEL_LENGTH, 
SEL_TYPE, 
SEL_OWN 
NULL) ; 

8, 
strlen (string), 
atom_list [FILE_NAME_ATOMl .atom, 
TRUE, 

txt_len = xv_get (textsw, TESTSW_LENGTH) + 1; 
string = (char *) calloc (txt_len, 1); 
xv_get (textsw, 

TEXTSW_CONTENTS, 0, string, txt_len); 

xv_create (drag_object, SELECTION_ITEM, 
SEL_DATA, string, 
SEL_FORMAT, 
SEL_LENGTH, 
SEL_TYPE, 
SEL_OWN 
NULL) ; 

xv_set (frame, 

8, 
strlen (string), 
atom_list [XA_STRING_ATOMl .atom, 
TRUE, 

FRAME_LET_FOOTER, "Start dragging", 
NULL) ; 
printf("Start dragging\n"); 
break; 

default: 
printf ("unknown event %d\n", event_action (event)); 

Function: get_ 
primary _selection 0 

The getJ)rimary_selection () function is called from 
either the move or copy switch statements of the drop_ 
proc () callback function. This function will get data from 
the source in the format mutually agreed upon. The first xv_ 

318 Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

get () function determines from the passed atom the selec­
tion data type. If the selection is a filename, the text string is 
retrieved from the file and placed in the text subwindow. If 
the selection is a text string, the last xv_get ( ) function re­
trieves the string and places it in the text subwindow. 

void 
get-primary_selection (sel_req) 
Selection_requestor sel_req; 
{ 

long 
int 
char 
char 
Atom 
int 

list =NULL; 

length; 
format char *sel_string; 
*sel_string; 
*string; 
*list; 
i; 

xv_set (sel_req, SEL_TYPE, atom_list [_SUN_AVAILABLE_TYPES_ATOM] .atom, 0); 
list = (Atom *) xv_get (sel_req, SEL_DATA, &length, &format); 
if (length == SEL_ERROR) 
{ 

else 

printf ("*** Unable to get target list .\n"); 

printf ("length 
while (*list) 

%d format %d\n", length, format); 

printf 
for (i 

("list %X\n", list); 
0; i < TOTAL_ATOMS; i++) 

if (*list atom_list [i] .atom) 

list++; 

printf ("supports %d %s\n", i, 
atom_list [i] .name); 
break; 

6.3.3 Drag and Drop Programming Example: XView Toolkit 319 



www.manaraa.com

xv_set (sel_req, SEL_TYPE, atom_llstlFILE_NAME_ATOMJ .atom, UJ; 
string = (char *) xv_get (sel_req, SEL_DATA, &length, &format); 
if (length != SEL_ERROR) 

else 

printf ("length = %d format = %d\n", length, format); 

/* Create a NULL-terminated version of 'string' */ 

sel_string = (char*) calloc (1, length + 1); 
strncpy (sel_string, string, length); 
xv_set (load_file, PANEL_VALUE, string, NULL); 
xv_set (textsw, 

return; 

TEXTSW_FILE, string, 
NULL) ; 

printf ("*** Unable to get FILE_NAME_ATOM selection. \n"); 

xv set (sel_req, SEL_TYPE, atom_list [XA_STRING_ATOMJ .atom, 0); 
string = (char *) xv_get (sel_req, SEL_DATA, & length, &format); 
if (length != SEL_ERROR) 
{ 

else 

printf("length = %d format = %d\n", length, format); 

/* Create a NULL-terminated version of 'string' */ 

sel_string (char *) calloc (1, length + 1); 
strncpy (sel_string, string, length); 

textsw _reset (textsw, 0, 0); 
textsw_insert (textsw, string, length); 

printf ("*** Unable to get XA_STRING_ATOM selection. \n"; 

Function: loadJile_ 
proc() 

The function load_file_proc () is the event callback pro­
cedure that loads the selected file into the text subwindow 
when the user enters a valid file name followed by a RE­
TURN. 

320 Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

/* Notify callback function for 'filename'. This routine loads the 
* named file into the textpane. */ 

panel_setting 
load_file-proc (item, event) 

6.3.4 

Panel_item 
Event 

char *value 

item; 
*event; 

(char *) xv_get (item, PANEL_VALUE); 

fprintf(stderr, "DnD_demo: load_file: value: %s\n", value); 

xv_set (textsw, 
TEXTSW_FILE, value, 
NULL) ; 

return panel_text_notify (item, event); 

Data Type 
Registration 

If a receiving application is to receive a droop from a source 
application, the source application must sent the data in a 
format readable by the receiving application. 1 For example, 
if Text Editor wishes to drop data into Mail Tool, Text Editor 
must be able to convert the data to a format which Mail Tool 
can read. Conversely, if Mail Tool wishes to drop data into 
Text Editor, Mail Tool must be able to convert the data to a 
format text Editor can read. 

6.3.4 Data Type Registration 

Although the source application is responsible for con­
verting data to a format readable by the receiving applica­
tion, it also behooves the receiving application to be able to 
receive data in some of the more common data formats like 
ASCII, Sun raster imaging, or PostScript page description 
language. 

Programmatically, drag and drop handshaking works as 
follows: 

• data is selected from the source application 
• data is sent (dropped) on the receiving application 
• receiving application requests a list of the data formats 

in which the source application can send the drop 
• source application replies with a list of data formats 

1. In this discussion we use data format and data type interchangeably. 

321 



www.manaraa.com

6.3.5 
Implementing 
Drag and Drop 
with DeskSet 

322 

• receIvmg application tells the source application in 
which format it would like the data sent 

• data is transferred. 

A source application must have data conversion routines 
for each application to which it wishes to drop data. Creating 
conversion routines consists of finding out the data format of 
the desired drop applications, and writing conversion rou­
tines specifically for those formats.1 Again, if you wish your 
application to be able to receive drops from other applica­
tions, ensure that your application can receive data in some 
of the more common data formats. 

SunSoft has undertaken a data type registration program 
to help standardize the data format names by which applica­
tions request data formats from each other. SunSoft encour­
ages all companies that wish to share their data with other 
applications to register data format names for their applica­
tion's data. This name will be used by other applications to 
reference desired data formats. Refer to Appendix C, "Ven­
dor Data Type Registration" for more information on data 
type registration. 

A central repository for data format names as well as ad­
ditional format information will be available on SUC­
CESSsm, the SunSoft on-line electronic support service for 
Sun's software developers. 

Call the Sunsoft Catalyst Information Center (Appendix C, 
"Vendor Data Type Registration") for information on the se­
lection, and drag and drop protocol for DeskSet. Note, how­
ever, that ICCCM currently does not specify the protocol 
supported by DeskSet. The current DeskSet protocol may 
change to comply with future ICCCM specifications. 

1. Refer to the receiving application's manuals or call the company that pro­
duces the receiving application for details of the data format. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

6.4 
Classing 
Engine 

6.4.1 
File Type 
Registration 

6.4 Classing Engine 

The Classing Engine (CE) identifies the characteristics, or at­
tributes, of files. The CE specifies attributes such as print 
method, icons, and opening commands for specific file types. 
File type is defined by a file's format (e.g., ASCII, PostScript, 
and Sun raster files), its parent application (FrameMaker® 
and Lotus 1-2-3® data files) or the application executable it­
self (File Manager, Mail Tool, or Wingz® executable file). 

The CE consists of two parts: a database which stores file 
type names and attributes, and a collection of routines which 
query the database. Some of the more common file attributes 
are: 

• A content string, or filename pattern to identify the file 
type 

• Directory location of a file type icon 
• Foreground and background colors of a file type icon 
• Print command of a file type, if applicable 
• Edit, display, or open command of a file. 

Other attributes, such as data exchange filters, text com­
pression procedures, and ToolTalk attributes can be associ­
ated with a file type as well-the CE is completely extensible. 
In addition, it is also possible to add custom databases for 
other data objects to the CE. 

The CE acts as a central repository for all file types and 
their attributes. The CE also provides applications with a set 
of routines for determining a file's type and retrieving its at­
tributes. 

This chapter describes the CE technology and how one 
program, File Manager (a graphical file and directory tool 
shipped with OpenWindows) uses it. The CE can be used 
similarly in any desktop application. 

Note - The CE is currently used by both the File Manager 
and the ToolTalk services. This chapter only discusses the 
CE as it relates to the technology used in File Manager. Refer 
to ToolTalk documentation for details on ToolTalk usage. 

Before an application can access a file's attributes, the file and 
its attributes must be in the CE database. This requires that 
the file's originators, typically the vendor whose application 
created the file, incorporate the file's type and its attributes 
into the CE database. File types can be incorporated into the 
CE database in the following ways: 

323 



www.manaraa.com

6.4.2 
Classing Engine 
Usage 

6.4.3 
Adding and 
Changing CE File 
Types and 
Attributes 

324 

1. Software vendors may register file types and their at­
tributes with SunSoft through the Vendor Data Type 
Registration program. The new file types will be incor­
porated into the CE database and distributed in sub­
sequent CE releases. Refer to Appendix C, "Vendor 
Data Type Registration," for detailed registration in­
structions. 

2. Software vendors may use the CE utilities in their soft­
ware installation process to update their user's CE da­
tabases with new file type information. Thus, a 
vendor's application can, as part of the installation 
process, enter its file types and attributes into the CE 
database. 

3. Users can use CE utilities or Binder, a DeskSet appli­
cation, to enter new file type information into the CE 
database. 

File Manager, displayed in Figure 6.4.1, provides an example 
of how the CE can be used. File Manager is a DeskSet appli­
cation that graphically displays a UNIX file system. Users 
may move, copy and delete files by dragging and dropping 
file icons onto directory icons, or onto a wastebasket icon. In 
addition, File Manager allows users to double-click on a data 
file icon to open the file in its parent application (file opening 
commands are stored in the CE database). For example, dou­
ble-clicking in a spreadsheet data file could start the spread­
sheet application program and open the data file. Double­
clicking on an ASCII file will open the file with the Text Edi­
tor. File Manager also lets users print a data file by simply 
dropping the file's icon on the Print Tool. 

Another feature of the File Manager is that different file 
types are represented by different icons. Thus, one applica­
tion's files will have one icon, and the files of another appli­
cation will have a different icon. Unique icons allow users to 
identify a file without opening it. File Manager retrieves the 
icon location from the CEo Refer to the Open Windows Version 
3 DeskSet Reference Manual for details on how to use File 
Manager. 

Adding or changing file types and attributes in the CE con­
sists of changing the CKE database to reflect these new file­
types and attributes. Before discussing how to do this, it is 
necessary to discuss the structure of the CE database. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

@) File Manager V3 : /neVgonzo/exportlho me/go nzo4lth ief/D IG 

(File v)(View V)(Edi~ ,,)(props V) (Goto: v). 

DEJElAFlAFlEl 
::::J 

~ ~ ~ ~ •• , 23.exe Chap' . 800-632:;~' .doc Chap' .800-6323-01. doc. ba> 

~ ~ ~ 
Chap4.8~O-6323-0' .doc Chap4.BOO-6323-01 .doc.au> C hap4.800-6323-01 . doc.bo> 

D ~ ~ 
C ha p4 .800-6323-01. doc.lck ChaD4_donnf bi nder l.rs 

~ 
b inoe~2.rs 

~ 
class i ng_en3 ine.ps 

~ 
file manager.rs 

~ 
new-1 . doc. backup 

c:::J 

Figure6.4.1. File manager. 

Classing Engine 
Database 

~ ~ 
binder3.rs c1 _old_6-28-91 

D ~ 
enscdpt ez house3.w kl 

~ ~ 
fmwindow.rs new-l.doc 

D ~ 
outbox snaps hot.rs 

The CE database contains file type names, identification pat­
terns, and attributes, The CE database is one logical database 
that is the composite of three physical databases called the 
user, system, and network databases. Multiple databases allow 
users to personalize their environment while still having ac­
cess to global data. 

6.4.3 Adding and Changing CE File Types and Attributes 325 



www.manaraa.com

Default Location of 
Classing Engine Databases 

Namespace Tables 

326 

The user database is unique to each user and resides in the 
user's directory structure, the system portion is common to 
all users on that specific machine, and the network portion is 
available to everyone on the network. The CE treats these 
three portions as overlays. When an application queries the 
CE database for information, the CE will first read the entry 
in the user database. If an entry is not found in the user da­
tabase, the CE tries the system database, and finally the net­
work database. This assures that any CE database 
information network information is used. The following dis­
cussion treats the three databases as a single aggregate data­
base. 

Each of the three Classing Engine databases has a default lo­
cation, as shown in Table 6.4.1. These files are in a non-read­
able format. To convert these files into an ASCII-readable 
format, use the ce_db_build utility as follows: 

ce_db_build <user I system I network> -to_ascii 
<file name> 

Table 6.4.1. Default Classing engine database locations. 

database default location 

user -/.cetables/cetables 

system /etc/cetables/cetables 

network $OPENWINHOME/lib/cetables/ 
cetables 

Each CE database file consists of two namespace tables, which 
are data base of file entries: 

• A files namespace table, containing file type names and 
identifiers 

• A types namespace table, which stores file type attributes. 

Both of these namespace tables are resident in the same file. 
A third namespace table for ToolTalk services is also in this 
file, but is not included in this discussion. To view the 
namespace tables use the ce_db_build command de­
scribed in the previous section. 

Each namespace table has an accompanying namespace 
manager, a collection of routines used to query that 
namespace table. Future releases of the CE will permit ISVs 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

File Type 
Identification 

to define unique namespace tables and write custom 
namespace manager libraries. 

Before an application can use a file's attributes, the applica­
tion must identify, or derive, the file type. In other words, it 
must determine whether a file is an ASCII file, Mail Tool ex­
ecutable file, PostScript file, and so forth. Two methods are 
used to determine file types: type-by-pattern or type-by-con­
tent. 

Typing by pattern involves matching the filename with a 
filename pattern. For example, all files whose names end in 
. care C source files, all files that end in . exe are DOS exe­
cutable files, and all files that end in . ps are PostScript files. 

Typing by content involves matching the contents of a file 
to a pre-defined string or number. For example, files that 
have the string WNG ZWZ S S as their first characters are Wingz 
worksheet files. Files that contain <Framemaker as its first 
characters are FrameMaker files. This is similar to the proce­
dure that is used by the standard UNIX f i 1 e command 
which uses the / etc/magic file. 

6.4.3 Adding and Changing CE File Types and Attributes 327 



www.manaraa.com

Files Namespace Table The files namespace table contains entries which are used to 
derive file types. A excerpt of a files namespace table is 
shown below. 

NS_NAME =Files # Beginning of Files namespace table 
NS_ATTR= ((NS_MANAGER, junk, <$CEPATH/fns_mgr.so»)# The Files namespace manager 

NS_ENTRIES=( 
( .. 

) ( . 

(FNS_TYPE, ref to-Types, <filemgr-prog» 
(FNS_FILENAME, str, <filemgr» 

# File type = File Manager 
# File pattern = filemgr 

(FNS_TYPE, ref to-Types, <mailtool-prog» 
(FNS FILENAME, str, <mailtool» 

# File type = Mailtool program 
# File pattern = mailtool 

) ( 

) ( . 

) ( . 

) ( . 

) ( . 

) ( . 

) ( . 

) ( 

) ( . 

328 

(FNS_TYPE, ref to-Types, <lotus-spreadsheet»# File type = lotus spreadsheet 
(FNS_FILENAME, str, <*.wk?» # File pattern = *.wk? 

(FNS_TYPE, ref to_Types , <msdos-executable> # File type = MS DOS Application 
(FNS_FILENAME, str, <*.exe» # File pattern = *.exe 

(FNS_TYPE, ref to-Types, <c-file» 
(FNS_FILENAME, str, <*.c» 

(FNS_TYPE, ref to_Types , <sun-raster) 
(FNS_MAGIC_OFFSET,str,<O» 
(FNS_MAGIC_MATCH,str,<Ox4d4d002a> 
(FNS_MAGIC_TYPE,str,<long» 

# File type = C source file 
# File pattern = *.c 

# File type = Sun Raster 
# Offset = 0 bytes 
# Content Pattern = Ox4d4d002a 
# Content Type = long int 

(FNS_TYPE,refto-Types,<framemaker-document»# File type = Framemaker Document 
(FNS_MAGIC_OFFSET,str,<O» # Offset = 0 bytes 
(FNS_MAGIC_MATCH,str,«MakerFile» 
(FNS_MAGIC_TYPE,str,<string» 

(FNS_TYPE, ref to_Types , <sunwrite-document» 
(FNS_MAGIC_OFFSET,str,<3» 
(FNS_MAGIC_MATCH,str,<pgscriptver» 
(FNS_MAGIC_TYPE,str,<string» 

(FNS_TYPE, ref to-Types, <postscript-file» 
(FNS_FILENAME,str,<*.ps» 

(FNS_TYPE,refto-Types,<postscript-file» 
(FNS_MAGIC_OFFSET,str,<O> 
(FNS_MAGIC_MATCH,str,<%!» 
(FNS_MAGIC_TYPE,str,<string» 

# Content Pattern = <Makefile 
# Content Type = string 

# File Types =SunWrite Document 
# Offset = 3 bytes 
# Content pattern = pgscriptver 
# Content Type = String 

# File type = Postscript file 
# File pattern = *.ps 

# File type = Postscript file 
# Offset = 0 bytes 
# Content Pattern = %! 
* Content Type = String 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

Types Namespace 
Table 

Entries in the files namespace table consist of the follow­
ing arguments: 

FNS_TYPE, or file type name, is the name (identifier) as­
signed to a file type. In the following example, the file type 
name for the File Manager program is f ilerngr-prog. The 
file type name for Lotus 1-2-3 R spreadsheet files is lotus­
spreadsheet. 

FNS_FILENAME is the file name pattern which identifies a 
file's type. The file name pattern is used to match a file name 
to its type. For example, a file ending with . c is a C Source 
file. A file ending with . exe is a DOS executable file. 

If a file type is derived with the type-by-content method, 
the file type entry requires these arguments: 

FNS_MAGIC_MATCH or magic match, is a string contained on 
all files of the type specified by FNS_TYPE. Thus, all Frame­
Maker document files contain the string <MakerFile. All 
PostScript files contain the string %!. 

FNS_MAGIC_TYPE specifies the data type of the magic 
match. In the example, all type-by-content entries match 
with strings, except for sun-raster files which use a long in­
teger. 

FNS_MAGIC_OFFSET specifies the number of bytes preced­
ing the magic match. As shown in the following example, 
<MakerFile starts at the first byte in a FrameMaker docu­
ment file pgscriptver starts after the third byte in a Sun­
Write document file. 

If both a file name pattern and a magic match are defined 
like as shown in the PostScript example, a file must pass both 
tests before it is typed. 

The types namespace table contains the attribute values of 
the file types. Once a file type is derived, the CE can retrieve 
the files attributes from the types namespace table. An ex­
cerpt of a types namespace table is shown below. 

6.4.3 Adding and Changing CE File Types and Attributes 329 



www.manaraa.com

NS_NAME=Types # The namespace named "Types" 
NS_ATTR= ((NS_MANAGER,string, <$CEPATH/tns_mgr.so»)# The Types namespace manager 
NS_ENTRIES= ( ... 

330 

(TYPE_NAME,type-id,<filemgr-prog» 
(TYPE_ICON,icon-file,<$OPEONWINHOME/include/images/filemgr.icon» 
(TYPE_BGCOLOR,color,<79 241 255» 
(TYPE_PRINT,string,<lpr -Plp» 

) ( ... 
(TYPE_NAME, type-id,<lotus-spreadsheet» 
(TYPE_OPEN,call,<dos -c 123» 
(TYPE_ICON,icon-file,<$OPENWINHOME/include/images/spreadsheet.icon» 
(TYPE_ICON_MASK,icon-fi1e,<$OPENWINHOME/include/images/doc.mask.icon» 
(TYPE_BGCOLOR,color,<255 225 255» 
(TYPE_TEMPLATE,string,<lotus%t.wks» 

) ( ... 
(TYPE_NAME,type-id,<compress» 
(TYPE_OPEN,call,<uncompress» 
(TYPE_ENCODE_PROG,call,<compress» 
(TYPE_ENCODE_ARGS,string,<-c» 
(TYPE_DECODE_PROG,call,<uncompress» 
(TYPE_DECODE ARGS,string,<-c» 
(TYPE_ICON,icon_file,<$OPENWINHOME/include/images/compress.icon» 
(TYPE_ICON_MASK, icon-file, <$OPENWINHOME/incluke/images/ doc.mask.icon» 
(TYPE_BGCOLOR,color,<255 0 0» 
(TYPE_FILE_TEMPLATE,string,<data%t.Z» 

) ( ... 

) ( 

(TYPE_NAME,type-id,<default-app» 
(TYPE_ICON,icon-file,<$OPENWINHOME/include/images/application.icon» 
(TYPE_FGCOLOR,color,<O 0 0» 
(TYPE_BGCOLOR,color,<183 229 193» 

(TYPE_NAME,type-id,<default-doc» 
(TYPE_OPEN,call,<textedit» 
(TYPE_OPEN_TT,tt,<textedit» 
(TYPE_PRINT,string,<cat $FILE I mp -10 I lpr -h» 
(TYPE_ICON,icon-file,<$OPENWINHOME/include/images/doc.mask. icon» 
(TYPE_FGCOLOR,color,<O 0 0» 
(TYPE_BGCOLOR,color,<183 193 229» 

) ( ... 

Entries in the type namespace table consist of the follow­
ing arguments: 

TYPE_NAME is the name of the file type. TYPE_NAME match­
es FNS_TYPE in the files namespace table. 

TYPE_ICON is the file containing the icon representation of 
the file type. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

Adding a New File 
Type 

TYPE_I CON_MASK is the file containing the icon represen­
tation of file when it is selected. 

TYPE_BGCOLOR specifies the background color of the file 
icon. Values are in red-green-blue (RGB) values ranging 
from 0 (lighter) to 255 (darker). 

TYPE_FGCOLOR specifies the foreground color of the file 
icon in RGB values. 

TYPE_OPEN specifies the command to open the file. (For 
File Manager this is triggered by a double mouse-click.) 

TYPE_PRINT gives the print command for the file. 

TYPE_FILE_TEMPLATE specifies a unique filename gener­
ated and used by the application as a filename identifier. 

TYPE_OPEN_TT is the ToolTalk identifier used when start­
ing applications. 

The attribute entry for compress demonstratesCE exten­
sibility. In addition to the standard attributes, compress file 
types have four additional attributes: TYPE_ENCODE_PROG, 

TYPE_ENCODE_ARGS, TYPE_DECODE_PROG, and TYPE_ 

DECODE_ARGS. A program designer has added these at­
tributes to compress file types in order to provide automatic 
file compression/decompression. For example, these at­
tributes can be used to link large files to a mail message. In­
stead of pasting the file into the message, the file could be 
automatically (using the UNIX compress command) when 
the file glyph is selected and dropped on the mail tool. The 
compressed file appears as a file glyph. After the message is 
sent, the file is automatically decompressed when the file 
glyph is selected. 

The last two entries of the code segment, default-app 
and default-doc, demonstrate two other interesting fea­
tures. Each represents the attributes of undefined data and 
application files. If a file does not have a definition in the files 
namespace, it is given a set of generic attributes depending 
on whether it is an application or document. 

The basic steps for adding a new file type to the CE database 
are as follows: 

1. Create an ASCII description file for the new file entry. 
Either extract the ASCII description file for the entire 
CE database using ce_db_build (the man page is in 

6.4.3 Adding and Changing CE File Types and Attributes 331 



www.manaraa.com

Adding a New File Type to 
the Classing Engine--­
Example 

332 

the back of this chapter), or create a new ASCII de­
scription file for the new file type entry. The process 
for creating a single entry ASCII description file is de­
scribed in the section that follows. 

2. Add a file type name and file type pattern to the files 
namespace table in the ASCII description file. You 
only need to add the file type pattern if the file type is 
derived using the type-by-pattern method. If the file 
is derived using the type-by-content method, add a 
magic match, magic match data type, and an offset. 

3. After a new file type has been added to the files 
namespace table, add its attributes to the types 
namespace table. 

4. Once the attributes are added, you can overwrite the 
old CE database file with the one you just created us­
ing the ce_db_build command. Use this command 
only if you are replacing the entire CE database file. If 
you created an ASCII description file for a subset of 
the entire CE database (this procedure is described in 
the next section), merge the file into the current CE 
database with the ce_db_merge command (the man 
page for this command is in the back of this chapter). 

This section shows a step-by-step example of adding a new 
file type to the CEo 

1. Define the file type name, its unique file name pattern 
or content string, and its attributes. For this example 
we'll use a hypothetical program called Peaks tool 
that works on files of a type called twin-peaks­
type: 

Object Name = twin-peaks-type 
Content Pattern = Good Coffee! 
Offset = 0 
Content Type = string 
Open Command (program note) = peakstool 
Icon Location= $OPENWINHOME/include/irnages/ 
laura. icon 
Icon Mask Location = $OPENWINHOME/include/ 
irnages/laura.rnask.icon 
Foreground Color = r=91, g= 229, b= 229 
File Pattern = *.pks 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

Only file type name and either a file content pattern (with 
offset and type) or file pattern are necessary to add a valid 
entry in the CE database. All other parameters are optional. 

2. Create a CE database definition file in ASCII and give 
it a name. The file illustrated in Figure 6.4.2, newty­
pe.ascii, corresponds to our twin-peaks file. Note that 
the attributes go in the types namespace table, and the 
file/content patterns go in the files namespace table. 

# newtype.ascii: A sample ASCII CE database description file 
{ 

NS_NAME=Types 
NS_ATTR= ((NS_MANAGER,string, <$CEPATH/tns_mgr.so») 
NS_ENTRIES= ( 

( 

(TYPE_NAME,type-id,<twin-peaks-type» 
(TYPE_OPEN,call,<peakstool» 
(TYPE_ICON,icon-file,<$OPENWINHOME/include/images/laura.icon» 
(TYPE_ICON_MASK,icon-file,<$OPENWINHOME/include/images/laura.mask.icon» 
(TYPE_FGCOLOR,color,<91 229 229» 
(TYPE_BGCOLOR,color,<91 126 229» 
(TYPE_FILE_TEMPLATE,string,<peaks.%t» 

) 

# Tell CE how to match files of your type. If the file begins with Good_coffee!, 
# it's of type twin-peaks-type. The string begins at offset 0 in the file. 
{ 

NS_NAME=Files 
NS_ATTR=((NS_MANAGER,junk,<$CEPATH/fns_mgr.so» ) 
NS_ENTRIES=( 

) 

(FNS_TYPE,refto-Types, <twin-peaks-type» 
(FNS_MAGIC_OFFSET,str,<O» 
(FNS_MAGIC_MATCH,str,<Good-coffee!» 
(FNS_MAGIC_TYPE,str,<string» 
) 

Figure 6.4.2. A sample ASCII Classing Engine database description file. 

3. After creating the ACII description file, execute the 
ce_db_merge command to add the new file type to 
one of the three CE databases. The network database is 
used in this example, with an ASCII description file 
called newtype. ascii. 

% ce_db_merge newwork -froffi_asscii newtype.ascii 

6.4.3 Adding and Changing CE File Types and Attributes 333 



www.manaraa.com

Syntax of ASCII 
Database Description 
File 

Binder 

334 

4. Note that you can also use cd_db_bui Id to add a new 
file type. Refer to the man page for details. 

The grammar that describes the Database Description File is 
given here in Backus-Naur Form (BNF): 

database 

name_space 
name 
ns_attrs 
av_list 

av 
entries 
entry_info_list 

entry_ent 
av_name 
av_type 
variable 
av_val 

.. - name_space 
database name_space 
{ name ns_attrs entries 
NS_NAME = variable 
NS_ARRT = (av_list) 

.. - av 
lav_listav 

::= (av_name, av_type, av_val) 
::= NS_ENTRIES = (entry_info_list) 

entry_ent 
entry_info_list entry_ent 
( av_list ) 
variable 
variable 
Id 
av_token 

The terminals are: 
Id = a - Z, A - Z , 0 - 9, _, -. 
NS_NAME, NS_ATTR, NS_ENTRIES, 
"{", "}", "(", ")", "," "=", Id, and av_token. 

av_token can come in two forms: 

• It can begin with a" <" and end with a ">" and can have 
any ASCII character (except a ">") within it. 

• It can begin with one or more digits (which represent a 
number n), followed by zero or more spaces, followed 
by a "<", followed by any n characters closed off by a 
">". This is the escape mechanism to allow for arbitrary 
byte string attributes that could have ">" characters 
within them. 

Attributes can be added or changed by editing the types 
namespace file, or by using Binder shown in Figure 6.4.3. 
Binder is a DeskSet tool which provides an interactive dis­
play of the CE database (refer to the Open Windows DeskSet 
Reference Guide for operating instructions). With Binder, an 
advanced user can bind together a file type, its application, a 
print method, and an icon by setting the desired attributes. 

The Binder is also helpful in understanding the Classing 
Engine, since it interacts directly with the CE database. When 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

,zj Binder V3 

§~:~~ 

£indtr Entries 
Cl 

~ msdo)S-e.ec"tab le 

~ O-f iie 

~ ~e'fmeler-oroq 

~ ~ po; tSai~l -f i le I 
I L . pri r.l(o; .-proq 

6 
Cl 

l , po ) I, (",'i:.t< ) ~A:.j 

~ud-("I~ £n:ry 

you open the Binder, you are given a selection of file types 
shown in icon form. These correspond to the file types con­
tained in the files namespace table. Once you select a file 
type, you can view the attributes in either the icon properties 
sheet or files property sheet. Binder allows you to change at­
tributes or create new file types interactively. 

~ Bindt" Pro p er1. Its 

Cltt 9 Dry: IICOr. I file Tyoo' I 

1= I ;: E:) 'den!ify, 1 b, ~a",. I c) ~o" !.n: I • os 

I ~ Content 
~ Tag alIne 9......- Er:J 

I 
I 

I I ::;-" ) Tag Type: layte I S~O'1 I I 

I 
.-;--:--, i tonq I SIT,n; I 

I 
. ...::....::...J 

>~') TI9 Valu.: 
: = , Tag "'asle: 

i 
JIolUprllC -----

I 

I 
@@J .. -:- ' G ..:..; 

~ Bindtr: Prope.,ies 

CaUgDry: I I(on I fi l' Ty~" I 

I 
"" ~ I~tntlfy, I by ~am'l py Cont~r' I I 

~ 
• PI I 

! ContI',! i Co J Ta, Offset 9......-i!E , 
, : ':::. ) T •• TVpe: laYI. I S~on I ! 

: 0. , ~) I lon~ ! SIT,n! I 

::- t : : ) Tag Value: 

c 

JIolll,ru: 
lIgMaslc 

~~ 
,-, 
''':''; G 

Figure 6.4.3. Binder-Icon and file types property sheet. 

6.4.3 Adding and Changing CE File Types and Attributes 335 



www.manaraa.com

6.4.4 
Accessing the 
Classing Engine 
Database 

Example program­
Querying the 
Classing Engine 
Database 

Access to the CE database is provided by the namespace 
manager, a collection of routines used to query the CE data­
base and perform other database chores. These routines are 
described in The Classing Engine API on page ?? It may, 
however, be helpful first to see two simple programs which 
use theCE. 

The program illustrated below, $OPENWINHOME/share/ 
src/dig_samples/ ce_simple. c, shows how the CE 
database is queried. When compiled and executed, the pro­
gram prompts the user to enter the name of an object (a file­
name). When a filename is entered, the program accesses the 
CE database then displays the file type and the location of its 
icon file on the screen. The user types "quit" to exit the pro­
gram. This program must be executed on a SPARCstation 
running Open Windows Version 3. 

The program is divided into code segments with a de­
tailed explanation of how each code segment works. Table 
6.4.2 shows the variable definitions for the sample program. 

Table 6.4.2. Variable definitions for dig_ce_sample. c. 

Tyep 

CE_NAMESPACE 

CE_ENTRY 

CE_ATTRIBUTE 

int 

char 

int 

Preliminary Setup 

336 

Variable Comment 

f_name_space file namespace table handle 
t_name_space types namespace table handle 

ftype_ent filenamespace table entry handle 
ttype_end types namespace table entry handle 

fns_type file type 
tns icon icon filename -
fns_attr file namespace tbl: file type attr. handle 
tns_attr types namespace tbl: icon attr. handle 

argcount ce_get_entry arg counter 
fd; file descriptor for file to be typed 

filename [81] buffer for file name 
buf[256] buffer for contents of file 

bufsize return values 
status 

This first segment includes a short program description and 
the compile statement. Loading the program requires the 
Classing Engine and dynamic linking libraries. The include 
files and variable definitions are: 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

<stdio.h> For standard io to get input and out­
put 

<desktop / ce.h> Needed for the Classing Engine vari­
ables 

<desktop / ce_err.h> Error return codes from Classing En­
gine (not used in this program, except 
for ce_begin). 

/* ce_simple.c - Simple Classing Engine Example that types a 
* file and determines its icon. 

* 
* cc -g -0 ce_sample -i$OPENWINHOME/include -L$OPEONWINHOME/lib 
* ce_simple.c -lee -ldl 
*/ 

#include <stdio.h> 
#include <desktop/ce.h> 
#include <desktop/ce_err.h> 

/* variable definitions */ 

CE_NAMESPACE f_name_space, t_name_space; 
CE_ENTRY ftype_ent, ttype_ent; 
CE_ATTRIBUTE fns_type, tns_econ, fns_arrt, tns_attr; 
int argcount; 

Open the CE Database After declaring the global variables, the program declares the 
variable definitions for the file to be typed: the file descriptor 
(fd), the file name (sufficiently long to include any likely path 
name), and a 256-byte buffer to hold the first characters of the 
file. 

The CE is initialized by ce_begin () using the manda­
tory NULL argument (see the API section for details). The 
call returns zero is successful; otherwise, it returns a positive 
integer representing an error code, which is printed to stan­
dard error, after which the program exits. 

6.4.4 Accessing the Classing Engine Database 337 



www.manaraa.com

main (argc, argv) 
int argc; 
char *argv[]; 

int fd; 
char filename[8l]; 
char buf[256]; 
int bufsize, status; 

/* Initialize the Classing Engine. */ 

status = ce_begin 
if ( status ) { 

NULL) ; 

fprintf (stderr, "Error Initializing Classing Engine 
Database - Error no: %d.\n", status); 

exit ( 0 );} 

Setting the Namespace 
Pointers 

The code segment below sets up the pointers in anticipation 
of reading the namespace entries for both the files and the 
types namespaces. 

ce_get_namespace_id ("Files") returns a handle 
to the files namespace table in f_name_space. If the either 
the file namespace table is not found, or the file namespace 
manager is not found, the call returns NULL and the pro­
gram exits. 

A similar ce_get_namespace_id () call and error rou­
tine is used for the types namespace table. These calls only 
need to be done once. 

/* Read in Namespace Entries. */ 
f_name_space = ce_get_namespace_id( "Files" ); 
if ( !f_name_space ) { 

fprintf( stderr, "Cannot find File Namespace\n" ); 
ce_end() ; 
exit(O) ; 

t_name_space = ce_get_namespace_id( "Types" ); 
if ( !t_name_space ) { 

fprintf( stderr, "Cannot find Types namespace\n" ); 
ce_end() ; 
exit(O) ; 

338 Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

Retrieve Desired Attribute 
IDs 

ce_get_attribute_id(f_narne_space, "FNS_TYPE") re­
turns a handle to the file type attribute in the files namespace 
table and assigns it to the object ID fns_attr. Similarly, the 
second ce_get_attribute_id () returns a handle to the 
icon filename attribute in the types namespace table and as­
signs it toe the object ID tns_a t t r 

/* Get the attribute ID's that we're interested in 
*/ 

if (! fns_attr) { 
fprintf (stderr, "Cannot find FNS_ATTR IN files\n"); 
ce_end(); 
exit (0) ; 

if (! tns_arrt) { 
fprintf (stderr, "Cannot find TYPE_ICON in Types\n") ; 
ce_end(); 
exit(O); 

Loop to Read File Names The next segment starts the loop to read in file names and 
derive their types. A while loop prompts the user for the 
name of the file that will be tested in the CE. If the user types 
"quit" the loop is exited (break) and CE database is closed 
(shown in next segment). 

The second if statement attempts to open the file. If the file 
is found, but cannot be opened, an error message is printed 
and the loop starts again. 

If the open is successful, an attempt is made to read the 
beginning of the file into the 256-byte buffer (to be used later 
by the CE). If the file is empty is actually a directory, an error 
message is printed and the loop starts again. 

6.4.4 Accessing the Classing Engine Database 339 



www.manaraa.com

/* Start loop to read in filenames */ 

while (1) { 
fprintf(stdout, -Filename: -); 
gets (filename) ; 
if ((strcmp(filename, -quit-)) 0) 

break; 

if ((fd = open (filename, 0)) == -1) { 
fprintf(stderr, -Cannot open: %s\n-, filename); 
continue; 

bufsize = read (fd, buf, size of (buf)); 
if (bufsize <= 0) { 

fprintf(stderr, -Empty file or Directory: %s\n-, 
filename) ; 

close (fd); 
continue; 

Get Entry in the Files 
Namespace 

This next code segment searches through the files namespace 
table for the file name and/ or file content obtained in the pre­
vious segment. If a match is found, the file type is returned. 

340 

The program calls ce_get_entry () to search the files 
namespace table and return the handle for the matching files 
namespace table entry. ce_get_entry () requires the files 
namespace ID (f_name_space), the number of arguments 
used to match entries in the files namespace table (3), and the 
three arguments themselves (the file name entered by the 
user, the buffer that contains the contents of the previous 
read, and the length of the buffer). 

ce_get_entry () returns a handle for the files 
namespace table entry that matches the filename pattern, 
contents of the file, or both if both are present. The handle to 
the entry is assigned to ftype_ent. If no entry is found in 
the files namespace table, a NULL is returned, and the while 
loop resumes. 

The program then gets the requested attribute value (file 
type) by calling ce_get_attribute (). ce_get_at­
tribute () requires the files namespace handle (f_name_ 
space), the handle to the entry (ftype_ent), and the file 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

type attribute handle (fns_attr). After the attribute value 
is obtained the value is printed. 

/* Get a matching entry in the files namespace */ 

argcount = 3; 
ftype_ent = ce_get_entry (f_name_space, argcount, 

filename, buf. bufsize); 
if ( !ftype_ent ) { 

fprintf (stder, "No match in Files Namespace\n" ); 
continue; 

fns_type=ce_get_attribute (f_name_space,ftype_ent,fns_attr); 
if (! fns_type) { 

fprintf(stderr, "No FNS_TYPE for entry in Files 
Namespace\n") ; 

continue; 

else{o 
fprint(stdout, "FNS_TYPE %s\n", fns_type); 

Get Entry in the Types 
Namespace 

The final segment of this program retrieves the icon informa­
tion from the types namespace table. Use ce_get_entry ( ) 
to retrieve a handle for the desired entry. ce_get_entry () 
is passed the types namespace handle (t_name_space), the 
number of arguments used to match entries in the types 
namespace table (1), and the argument itself (fns_type). If 
a matching entry is not found, an error message is printed 
and the while loop is resumed. If a correct entry is found, the 
program calls ce_get_attribute () with t_name 
space (types namespace), the handle to the entry (ttype_ 
ent), and the icon handle (tns_attr) to return the icon file­
name. 

Finally, the icon name (path and name) is printed, the 
Classing Engine is closed, and the program exits normally. 

6.4.4 Accessing the Classing Engine Database 341 



www.manaraa.com

/* Get a matching entry in the types namespace found from 
* getting type from the files namespace and find icon 
*/ 

argcount = 1; 
ttype_ent = ce_get_entry ( t_name_space, argcount, 

fns_type ); 

if ( !ttype_ent ) { 
fprintf( stderr, "No match in Types namespace\n" ); 
continue; 

tns icon = ce_get_attribute (t_name_space, ttype_ent, 
tns_attr) ; 

if (! fns_icon) { 
fprintf(stderr, "No TYPE_ICON in Types Namespace\n"); 
continue; 

else 
fprintf(stdout, "TYPE_ICON %s\n", tns_icon); 

} 

} 

cd_end ( ); 
exit (0); 

Example Program­
CEMapping 
Functions 

342 

This program, $OPENWINHOME!share!src!dig_sam­
pIes! ce_mapl . c, demonstrates the use of the CE mapping 
functions. Refer to the API section that follows for further 
details. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

/* dig_ce_mapl.c - Classing Engine example that print all the types 
* in the Files and Types namespaces. 

* 
* cc -g -0 dig_ce_mapl -I$OPENWINHOME/include -L$OPENWINHOME/lib 
* dig_ce_.mapl.c -Ice -ldl */ 

#include <stdio.h> 
#include <desktop/ce.h> 
#include <desktop/ce_eer.h> 

/* variable definitions */ 
CE_NAMESPACE f_name_space, t_name_space; 
CE_ENTRY ttype_ent; 
CE_ATTRIBUTE fns_attr, fns_type; 

main (argc, argv) 
int argc; 
char * argv [ 1 

int status; 
void *map_func(), *type_map_func(); 

/* Initialize the Classing Engine. */ 

status = ce_begin( NULL); 
if ( status ) { 

fprintf( stderr, -Error Initializing Classing Engine 
Database - Error no: %d.\n-, status); 

exit ( 0 ); 

/* Get Files and Type Entries. */ 

f_name_space = ce_get_namespace_id( -Files- ); 
if ( !f_name_space ) { 

fprintf( stderr, -Cannot find File Namespace\n- ); 
exit ( 0 ); 

6.4.4 Accessing the Classing Engine Database 343 



www.manaraa.com

t_name_space = ce_get_namespace_id( "Types" ); 
if ( !t_name_space ) ( 

fprint( stderr, "Cannot find Type Namespace\n" ); 
exi t ( 0 ); 

/* Get the FNS_TYPE attribute 1D */ 

if (!fns_attr) { 
fprintf (stderr, "No FNS-TYPE In Files Namespace\n"); 
ce_end() ; 
exit (0); 

/* ce_map_through_entries() passes each entry handle and 
* namespace handle to the map_func() 
*/ 

ce_map_through_entries (f_name_space, map_func, NULL); 
ce_end() ; 
exit (0); 

/* Function to handle each entry as it is passed from the mapping 
* function */ 

void 
*map_func (fns_handle, ent_handle) 
CE_NAMESPACE fns_handle; 
CE_ENTRY ent_handle; 
{ 

int argcount = 1; 

/* Get File type value (FNS_TYPE) and print out */ 
fns_type = ce_get_attribute (f_name_space, ent_handle, 

fns_attr) ; 
if (! fns_type) 

return (NULL); 
else 

344 Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

/* 

/* Get matching entry in the Type namespace */ 
ttype_ent = ce_get_entry (t_name_space, argcount, fns_type); 
if (! ttype_ent) { 

fprintf (stderr, uNo match in Type namespace\n U); 
return (NULL); 

/* Map through all the attributes of the entry and send to 
* type_map_func() 
*/ 

ce_map_through_attrs (t_name_space, ttype_ent, type_map_func, 
NULL) ; 

fprintf (stdout, U\n U); 
return (NULL); 

* Function to print all the Type attributes associated with the File 
*type 
*/ 

void 
*type_map_func (tattr_handle, tattr_value, args) 
CE_ATTRIBUTE tattr_handle; 
char *tattr_value; 
void *args; 

char *attr_value; 

if (attr_name) 
fprintf (stdout, U%s %s\n U, attr_name, tattr_value); 

return (NULL); 

6.4.5 
The Classing 
Engine API 

The CE API can be called from C,C++, or ANSI C programs. 
All CE calls have names that begin with ce-f with each ses­
sion begun with ace_begin ( ) and ending with ce_end ( ) . 

6.4.5 The Classing Engine API 

The arguments manipulated by the API are either Class­
ing Engine object handles or client-decipherable argument 
values and return values. Classing Engine object handles are 
of type CE_NAMESPACE, CE_ENTRY, CE_ATTRIBUTE and 
are returned when a client successfully accesses a name­
space, an entry, or an attribute. Client-decipherable argu-

345 



www.manaraa.com

Mapping Functions 

Error Reporting 

Location of Namespace 
Managers 

6.4.6 
Readingfrom the 
Classing Engine 
Database 

346 

ment values and return values are expected to be of type 
void*, if they are pointers, or of type int. 

The ce_map_through_ * functions loop through name­
space, entry, and attribute lists, applying a client-supplied 
function to each member of a list. The previous example 
shows how the mapping functions work in detail. 

ce_begin returns 0 if it succeeds, otherwise it returns an 
error number. All Classing Engine ce_get_ * calls return 
NULL is they fail, otherwise they return a valid handle or 
return value. 

The ce_map_through_ * callsmapthroughnamespaces, 
entries, or attributes and terminate if they encounter a non­
null return value from the map function, and return the non­
null value. If the map function returns null in every instance, 
the ce_map_through_ * function returns null. 

Every namespace manager library file should be named as 
the NS_MANAGER namespace attribute. This should be a full 
pathname with both environment variables and the 'arch' 
command allowed. 

If a namespace manager library name is preceded by a 
$CEPATH, the search rules implied by $CEPATH will be used 
to search for the namespace manager library. 

Initializing the Classing Engine 

int 
ce_begin(void * args) i 

Reads in the CE database and makes CE internal structures 
suitable for subsequent CE API calls (except for another ce_ 
begin ( )). Subsequent calls to ce_begin () will re-read 
the CE databases. args, which is reserved for future use, 
must be NULL. 

This call returns 0 if sucessful. Otherwise, the return codes 
from this call have the following meanings: 

CE_ERROR_READING_DB 

This message indicates that an unrecoverable error oc­
curred while reading a CE database. Note that the non-exist­
ence of a particular CE database file is not considered an 
error. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

Determining if the Classing Engine Databases Changed 

int 
ce_db_changed(); 

Returns 0 if CE databases have not been changed since the 
last call to ce_begin ( ) . It will return 1 if the databases 
have been changed. 

Closing the Classing Engine 

int 
ce_end (); 

Frees all resources being used by the CEo All CE returned 
handles and values are invalid after this call. ce_end () re­
turns 0 in all cases. 

Determining Which Databases are Available 

int 
ce_get_dbs( 

int *num_db, 
char ***db_names 
char ***db-pathnames); 

Returns a count of the databases in *num_db. The names of 
the databases read in is returned in db_names. The path­
names of the databases is returned in db-pathnames. 
There are three possible database names: 

user the user-level database 
system the system-level database 
network the network level database. 

Returns database names and pathnames even if there was 
no database at a particular pathname. Thus, it provides the 
caller information about where the CE databases would be 
even if one or more CE databases do not exist. 

Accessing a Namespace 

CE_NAMESPACE 
ce_get_namespace_id( 
char *namespace_name); 

Returns a handle to a namespace. The namespace handle 
can be used in all subsequent calls to the CE in this process. 
This call returns NULL if the namespace was not found. 

6.4.6 Readingfrom the Classing Engine Database 347 



www.manaraa.com

348 

This call also returns NULL if the namespace manager for 
the given namespace was not found. 

Accessing an Entry in a Namespace Table 

CE ENTRY 
ce_get_entry( 
CE_NAMESPACE namespace, 
int argcount, 
void *argl, 
void *arg2, ... , 
void *argN); 

Searches through a specified namespace table and returns 
an entry that contains a matching argument. This call re­
quires a handle to a namespace, the number of arguments 
used to match entries, and the arguments themselves. 

Getting an Attribute Handle 

CE_ATTRIBUTE 
ce_get_attribute_id( 
CE_NAMESPACE namespace, 
char *attr_name); 

Retrieves a handle to an attribute type within a namespace 
table. All attributes with the same name within a name­
space, can be retrieved using the same attribute handle. 
This handle is retrieved with this call. 

For example, all attributes named ICON will have the 
same attribute handle within a single namespace. This call 
returns NULL if the named attribute was not found in this 
namespace. 

Getting an Attribute 

char 
*ce_get_attribute( 

CE_NAMESPACE namespace, 
CE_ENTRY entry, 
CE_ATTRIBUTE attribute); 

Retrieves the value of an individual attribute. This call re­
turns NULL if the attribute could not be found in this entry. 
It requires a handle for the namespace table (ce_get_ 
namespace_id ()), entry (ce_get_entry ()), and at­
tribute (ce_get_attribute_id ()) 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

Getting the Size of an Attribute 

int 
ce_get_attribute_size( 

CE_NAMESPACE namespace, 
CE_ENTRY entry, 
CE_ATTRIBUTE attribute) i 

Returns the size (in bytes) of an attribute value. Returns 0 if 
the attribute was not found in this entry. 

Getting an Attribute's Type String 

char 
*ce_get_attribute_type( 

CE_NAMESPACE namespace, 
CE_ENTRY, entry 
CE_ATTRIBUTE attribute) i 

Returns the character string denoting the type of an at­
tribute. Attribute types are not enforced nor understood by 
the CE. Returns NULL if the attribute was not found in this 
entry. 

Getting a Namespace Entry 

CE_ENTRY 
ce_get_ns_entry( 
CE_NAMESPACE namespace) i 

Returns the namespace entry handle for the specified 
namespace. Namespaces can have attributes of their own; 
for example, a range of bytes to read for magic number in­
formation in the case of files. Namespace attributes are 
stored in a namespace entry. This call returns a handle to a 
namespace's entry. All calls that apply to entries can be 
made using the returned entry handle. Returns NULL if the 
namespace entry was not found. 

Mapping Through Namespaces 

void 
*ce_map_through_namespaces( 

void * (*map_func) (), 
void *args) i 

Maps through all installed namespaces, calls map_func () 
for each namespace, and passes each namespace handle as 
the first argument to map_func () and any other args as 

6.4.6 Readingfrom the Classing Engine Database 349 



www.manaraa.com

350 

subsequent arguments. map_fune () is a user-defined 
function. args are optional additional arguments for map_ 
fune (). If no arguments are to be passed, use NULL. 

The map will be stopped either when there are no more 
namespaces or when map_fune returns a non_null value, 
which will be returned to the caller. 

Mapping Through Entries 

void 
*ee_map_through_entries( 

CE_NAMESPACE namespaee, 
void * (map_fune) (), 
void *args), 

Maps through all the entries in a namespace, calls map_ 
f une () for each entry, and passes the namespace handle as 
the first argument to map_fune ( ) , entry handle as the sec­
ond argument, and any other map_fune () args as subse­
quent arguments. map_fune () is a user-defined function. 
args are optional additional arguments for map_fune. If 
no arguments are to be passed, use NULL. 

The map will be stopped either when there are no more 
entries or when map_fune returns a non_null value, which 
will be returned to the caller. 

Mapping Through Attributes 

void 
*ee_map_through_attrs( 

CE_NAMESPACE namespace, 
CE_ENTRY entry, 
void * (*map_fune) (), 
void *args); 

Maps through all the attributes in an entry, calls map_ 
fune () for each attribute, and passes the attribute handle 
as the first argument to map_fune (), each attribute value 
as the second argument, and args as the subsequent argu­
ments to map_fune. map_fune () is a user-defined func­
tion. args are optional additional arguments for map_ 
fune. If no arguments are to be passed, use NULL. 

The function will be stopped either when there are no 
more attributes or when map_func returns a non-null value, 
which will be returned to the caller. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

Mapping Through the Attributes of a Namespace 

void 
*ce_map_through_ns_attrs( 

CE_NAMESPACE namespace, 
void * (*map_func) (), 
void *args); 

Maps through all the attributes of a namespace, calls map_ 
func ( ) for each attribute, and passes each attribute handle 
as the first argument to map_func (), each attribute value 
as the second argument, and args as subsequent argu­
ments. map_func () is a user-defined function. args are 
optional additional arguments for map_func. If no argu­
ments are to be passed, use NULL. 

The map will be stopped either when there are no more 
attributes or when map_func returns a non-null value, 
which will be returned to the caller. 

Getting the Name of a Namespace 

char 
*ce_get_namespace_name (CE_NAMESPACE 
namespace) ; 

We envision some namespace mapping functions requiring 
to know the name of a namespace, given a namespace han­
dle. This function will return a namespace name, when 
passed a namespace handle. 

Getting the Name of an Attribute 

char 
*ce_get_attribute_name(CE_ATTRIBUTE 
attribute) ; 

We envision some attribute mapping functions requiring to 
know the name of an attribute when passed a handle to it. 
This function will return an attribute name, when passed an 
attribute handle. 

Determining Which Database Contains an Entry 

int 
ce_get_entry_db_info( 

CE_NAMESPACE namespace, 
CE_ENTRY entry, 
char **name-I)tr, 
char **path-I)tr); 

6.4.6 Readingfrom the Classing Engine Database 351 



www.manaraa.com

Classing Engine 
Utility Programs 

352 

Returns the name of the database (either user, system, or 
network) in which an entry is stored. The name is returned 
in *name-ptr and the pathname of the database in *path_ 
ptr. This call returns 0 if it is successful, otherwise it returns 
CE_ERR_WRONG_ARGUMENTS. 

Sun provides two utilities that enable reading and writing 
the Classing Engine database files to and from an ASCII 
form, to allow developers to view the database. The man 
pages for these utilities follows on the next pages. 

ce_data_build 

The build utility, ce_db_build, will generate a readable 
ASCII file from the CE database, if given the -from_ascii 
argument. The user must also indicate the desired database 
(user, system, or network) and the filename where the file 
should be written. This allows a developer to print and pe­
ruse a hard copy of the database for familiarization or trou­
bleshooting. 

Caution - The ce_db_build utility will overwrite an exist­
ing CE database if given the -from_ascii argument. This 
will overwrite the existing CE database and replace it with 
the information from an ASCII file. 

An optional argument, -db_file filename, can be given 
to generate a CE database file without disturbing the existing 
CE database files. 

cd_db_merge 

The merge utility, ce_db_merge, permits the merging of 
an ASCII database description file with an existing CE da­
tabase file. This utility permits the merging of custom CE 
entries to the database. 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

NAME ce_db_build-build an entire CE database 

SYNOPSIS ce_db_build user I system I network -from_ascii I-to_ 
ascii filename \ [-db_file db-filename] 

DESCRIPTION cd_db_build reads from/writes to the Classing Engine databases 
and an ASCII description file. 

OPTIONS 

FILES 

EXAMPLE 

user I system I network indicates which CE database is to be used, 
either the user, the system, or the network database. 

-froID_ascii filename indicates that the user wishes to write to the 
stated CE database from the ASCII file filename. The entire CE data­
base will be re-written. This is an all-or-nothing update of the CE da­
tabase; that is, effectively the old database is erased and a new one is 
created based solely on the contents of the ASCII file. 

-to_ascii filename indicates that the file named filename should be 
written with the ASCII description of the stated CE database. This 
ASCII description may then be modified and supplied as input to an 
invocation of ce_db_build with the -from_ascii argument. 

-db_file should be used in the case that a particular database is to be 
read from/written to using db-filename as the pathname of the CE 
database, instead of the default database files noted below. 

The Classing Engine uses the following default database files: 
user -/.cetables/cetables 
system / etc/ cetables/ cetables 
network $OPENWINHOME/lib / cetables/ cetables 

Create and ASCII definition file newdef from the existing user CE 
database. 

ce_db_build user -to_ascii newdef 
Create the user CE database from file new_db. 

ce_db_build user -from_ascii neW_db 

6.4.6 Reading from the Classing Engine Database 353 



www.manaraa.com

NAME ce_db_merge-merge a Classing Engine ASCll database description 
file into the CE database 

SYNOPSIS ce_db_merge user I system I network -from_ascii filename\[-db_ 
file db-filename] 

DESCRIPTION ce_db _merge will attempt to merge namespace and entry definitions 
from an ASCII description file into an existing CE database. It will 
overwrite namespace attributes; that is, namespace attributes from 
the ASCII file will replace existing namespace attributes. 

OPTIONS 

FILES 

EXAMPLES 

354 

user I system I network indicates whether the user wants to update 
the user, the system, or the network CE database. 

-from_ascii filename indicates that the user wishes to write the stated 
CE database from the ASCII file filename. The named CE database will 
be updated based on the ASCII description file. Any existing entries 
that also exist in the ASCII description file will be updated. Any new 
ASCII descriptors will be entered in the database. 

-db_file should be used in the case that a particular CE database is to 
be written to, using db-filename as the pathname of the CE database, 
instead of the default database files noted below. 

The Classing Engine uses the following default database files: 

database: 
user 
system 
network 

default location: 
-/.cetables/cetables 
/etc/cetables/cetables 
$OPENWINHOME/lib/cetables/cetables 

Merge an ASCII definition file newdef into the existing user CE data­
base. 

ce_db_merge user -from_ascii newdef 
Merge the ASCII file newdef into the Classing Engine system data­
base at/foo/barlsysfile. 

cd_db_merge system -from_ascii newdef -db_file 
/foo/bar/sysfile 

Chapter 6. Integrating Applications on the Sun Desktop 



www.manaraa.com

6.A 
Drag and Drop 
User Interface 
Specification 

6.A.l 
Introduction 

Classic Examples 

Drag and drop is a convenient, powerful, general purpose ac­
celerator for transferring data within and between applica­
tions. This specification establishes conventions for the user 
interface of the drag and drop mechanism. It is intended to 
guide the implementation of drag and drop for OpenWin­
dows Version 3, and to guide application developers toward 
consistent uses of the technique. It does not describe imple­
mentation details of the drag and drop mechanism, nor does 
it describe the API. 

This document includes descriptions of: 

• the kinds of objects that can be dragged 
• the meanings of dropping objects on specific locations 

(such as on a window header, on a pane in a window, or 
on a drag and drop target) 

• the differences between dragging with and without the 
DUPLICATE modifier key held down 

• the visual feedback associated with the stages of a drag 
and drop operation 

• how the process of data translation appears to users 
• how users can cancel drag operations in progress, and 

undo completed drag operations. 
• how error messages are presented to users. 

Drag and drop is a technique for manipulating data and ap­
plications by directly manipulating graphical objects on the 
display screen. It has become a standard accelerator on the 
SunSoft desktop for transferring data between applications 
and for moving data around within an application. A classic 
example of the use of drag and drop is to move documents 
around in the directory hierarchy. For example, in File Man­
ager you can move a document into a folder by dragging a 
document glyph and dropping it on a folder glyph. Techni­
cally speaking, the document is the source object, and the 
folder is the destination object. First you press and hold the 
SELECT mouse button while the pointer is on the document 

6.A Drag and Drop User Interface Specification 355 



www.manaraa.com

356 

you want to move (the source) and then you drag it onto the 
folder glyph (the destination) and release the mouse button. 

In addition to dragging the documents between folders in 
File Manager, you can also drag documents from a File Man­
ager folder into the wastebasket to delete them, or onto Print 
Tool to print them. See Figure 6.A.1. Whereas moving docu­
ments among folders in File Manager or from a folder to the 
wastebasket involves only one application (File Manager), 
dragging documents to the Print Tool involves the transfer of 
data between two applications, File Manager and Print Tool. 
In other words, in the latter case the source application and the 
destination application are different, whereas in the former 
cases they are the same. 

@) fll. "." • .,r: Iham./n."cVlrn,mDI 

~~~ ~(Homf V)~ /hc""'/nanc:y. 

105EtS
0 0 0 0 0 [J 0
0190 0290 0390 0490 0590 06~O 079(-

0 0 D D
0890 0990 90-Q4 buagl! bua gft FV9 \

"-
Q

---- ~ --- ----
CI" I"' ttoa l

Figure 6.1. Dragging File Manager documents ..

Chapter 6. Integrating Applications on the Sun Desktop

I
11:'\

.
I
I

=

www.manaraa.com

Drag and Drop as
Cut and Paste

6.A.l Introduction

Another classic use of drag and drop is as an alternative to
the Cut and Paste commands. For example, Text Editor al­
lows you to move selected text from one document to an­
other either by using the Cut and Paste commands, or by
using drag and drop. To use drag and drop, you follow these
steps. Before you begin, you need to have the two documents
loaded into Text Editor, and visible in two windows. Then
you select the part of the first document that you want to
move. Next you press the SELECT mouse button on the se­
lection, and drag it to the location where you want to insert
it in the other document. Releasing the mouse button com­
pletes the drag and drop operation. See Figure 6.A.2.

Figure 6.2. Dragging text between textedit documents.

Although drag and drop is often used as an alternative to
Cut and Paste, as described above, the two techniques have
subtly different effects. First, whereas the Paste command in­
serts the source object at the caret in the destination docu­
ment (replacing the selection if there is one), drag and drop
inserts it at the hot spot of the pointer. Second, drag and drop
does not involve the clipboard, whereas the commands Cut

357

www.manaraa.com

To Cut or to Copy?

Where WeAre
Headed

6.A.2
Formal Definition

358

and Paste do. Third, after a drag and drop operation the
newly inserted text is selected, whereas after a Paste it is not
selected.

In the example above, drag and drop was used as an alterna­
tive to Cut and Paste. However, if the user had held down
the DUPLICATE modifier key1 during the drag operation,
the source would have been copied. As a result, the drag and
drop operation would be analogous to Copy and Paste rather
than Cut and Paste.

As these examples indicate, the drag and drop technique is
used in a variety of different ways by OPEN LOOK applica­
tions. It has proven to be a convenient, powerful, general
purpose accelerator for transferring data within and across
applications. To exploit the paradigm to its fullest, we need
conventions for its use so that applications will use it in sim­
ilar ways, and consequently, users will know what to expect
of it. Conventions are necessary for everything from the
meaning of dropping onto an iconified application base win­
dow (a miniwindow), to the feedback that appears when the
user attempts a drop in an inappropriate place.

The following sections of this Appendix describe the de­
tails of the user interface for drag and drop. They include a
formal definition of drag and drop, and a description of the
kinds of operations that applications may use drag and drop
for. They also specify the meaning of dragging with and
without the DUPLICATE modifier key held down, and the
meanings of dropping on specific types of destination ob­
jects. Finally, they specify the visual feedback associated with
the stages of the drag and drop operation, and describe how
a variety of special conditions should be handled.

Technically speaking, drag and drop is a gestural technique
for manipulating objects? with the following characteristics:

• The source is indicated by initiation of the drag opera­
tion on an object that typically has been selected, or that
will become selected as the drag operation begins.

• The drag operation is initiated by pressing and holding
down a mouse button while dragging the mouse. Drag­
ging the mouse involves moving it by five pixels or
more.3

1. The DUPLICATE modifier key is the CTRL key by default.
2. The term object is used in the loose, generic sense in this document.
3. Users should be able to adjust the drag threshold through a workspace
property.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

6.A.3
The Source

Multiple Source
Objects

Windows as Source
Objects

6.A.3 The Source

• Following initiation of the drag operation, a drag mode
persists in which the user indicates a continuous path
from the source to the destination.

• The drag operation terminates when the user releases
the mouse button.

• The destination is indicated by the pointer position at
the end of the drag operation. More specifically, the des­
tination is indicated by the location of the pointer's hot
spot when the user releases the mouse button.

On the SunSoft desktop, drag and drop is defined as an
accelerator-anything that you can do using drag and drop you
should also be able to do in another way, often by selecting
commands from menus.

Any object that is selectable can potentially be dragged, ex­
cluding, of course, selections in most controls (such as exclu­
sive and non-exclusive settings and menus). Typically, the
source is a data object, such as a document or a text selection,
or a container of data objects, such as a folder.

When the source object is a text selection, a data object, or
a container of data objects, the source is the primary selec­
tion. After the drag operation has completed, the new object
at the destination location is the primary selection. for exam­
ple, if you drag a text selection from one window to another,
after the drag operation the text that has been inserted at the
destination location is selected.

You can drag many different source objects in a single drag
operation, provided that you can create a selection that in­
cludes all the objects. When the primary selection includes
objects in a window, this naturally restricts you to dragging
objects only from a single window, since the primary selec­
tion cannot span windows.

If the source objects have a natural logical ordering in the
source application, the drag operation should preserve the
ordering. For example, if the source objects are document
glyphs that are displayed in the source application organized
by filename, the drag operation should order them alphabet­
ically by filename. However, the destination application
should not presume that the source objects it receives are or­
dered in any way.

Open windows and iconified windows (that is, mini­
windows) also may be source objects in drag and drop oper-

359

www.manaraa.com

6.A.4
The Destination

360

ations; however, these drag and drop operations are atypical
in several regards.

First, when you drag a window it does not become se­
lected. Because the window is not selected, you can drag it
without losing the current primary selection. So, for example,
you can make a selection in a window; then drag the window
to reposition it; and your selection in the window will still be
there. 1

Second, you can't duplicate a window by holding down
the DUPLICATE key when starting a drag operation. When­
ever you drag an open window or a mini-window, the effect
of the drag action is to move the window, not to clone it.

Third, when you are dragging an open window or mini­
window, the only place you can drop it is onto the work­
space. In other words, when a mini-window or an open win­
dow is the source, the only legal destination is the workspace.
of course, you can drop one window onto another, because
our workspace supports overlapping window placement.2

However, even in this case the destination is the workspace.
That is, the overlaid window is not the destination, the work­
space is.

Fourth, when you drag an open window or a mini-win­
dow, the mouse pointer does not change into one of the
pointers that are typically used for drag and drop operations
(see Figure 6.A.6 on page 374). We have chosen to use the
normal pointer because users are unlikely to view dragging
open windows and mini-windows as drag and drop opera­
tions. and due to all of the restrictions on dragging open win­
dows and mini-windows, we want to encourage users not to
view dragging a window as a drag and drop operation.

The destination of a drag operation is determined by the lo­
cation of the pointer's hot spot at the time the user releases
the mouse button. If the source object is a data object or a
collection of data objects, the destination may be a work­
space; a mini-window; or a location in an open window, such

1. In the future we may identify other cases where it is useful to be able to
drag an object without selecting it. However, presently only open windows
and mini-windows can be dragged without being selected.
2. There is one exception to this. You cannot drop a mini-window onto an
open window. More specifically, you cannot terminate a drop when the
source is a mini-window and the hot spot of the pointer is within the border
of an open window. If you attempt such a drop, a Notice will be presented
which will tell you the drop operation is not allowed, and the drop will be
terminated.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

as a data pane, a text field, or a drag and drop target. Drag and
drop targets are a new type of graphical element, whose pur­
pose is to support drag and drop operations. They are de­
scribed in a following section of this document. If the source
object is a mini-window or an open window, the only al­
lowed destination is the workspace.

The legal source and destination combinations are shown
in Table 6.A.1.

Table 6.A.l. Legal combinations of sources and destinations.

Source

Data Object/Container

Mini-Window

Open Window

The Drop Method

Dropping onto
Specific Locations

Data Object! Destination Open
Container Mini-Window Window Workspace

Yes Yes Yes Yes

No No No Yes

No No No Yes

The primary purpose of the drop method is to specify the pro­
cessing that the source object undergoes at the destination.
That is, the drop method determines the effect of the drag and
drop operation on the destination. The application that owns
the graphical element underneath the pointer at the time of
a drop (the destination application) identifies the drop method.
The destination may use different drop methods depending
on what type of object the source is and depending on where
the user dropped the source object.

To ensure conformity among applications and to make it
easy for users to guess what the results of a drag operation
will be, we have established guidelines for the drop methods
that applications may use with different parts of the work­
space. These guidelines specify which standard elements of
the workspace can be used as destinations, and they describe
appropriate types of drop methods.

Text Fields and Text Panes

When you drop a source object onto a single-line text field,
multi-line text field, or text pane, the source object should be
inserted into the destination text at the position of the point­
er's hot spot. If the source object is a text selection, then the
text selection is inserted, whereas if the source object is a
named object (such as a document), the name of the source
object is inserted.

6.AA The Destination 361

www.manaraa.com

Non-Text Panes

Scrolling Lists

362

Naturally, source objects that are neither named objects
nor text selections cannot be dropped onto text fields.

As is the case with text panes, when the user drops a source
object onto a non-text pane, the source is inserted onto the
destination object. However, whereas in a text pane the
source is always inserted at the pointer's hot spot, in a non­
text pane the destination application has several options to
choose from. The destination application may choose either
to insert the source object at the pointer's hot spot, or to:

• insert the source object at a location that depends solely
on characteristics of the source object

Calendar Manager processes mail messages dropped on it in
this fashion. If you drop a mail message onto an open Calen­
dar Manager window, and the mail message contains a cor­
rectly formatted appointment, Calendar Manager will insert
the message into the calendar at the appropriate date and
time.

• place all source objects at single location in the destina-
tion pane

For example, imagine a graphical cartridge tape manager
that has a data pane that displays glyphs for the files on the
tape. Imagine that you can drag a document from File Man­
ager onto the Tape manager pane to add the document to the
tape. Because tapes are sequential media, regardless of where
you drop the document in the pane, the document file is
added to the end of the tape.

• apply processing specific to the glyph the source object
was dropped onto.

For example, File Manager's Path Pane and Folder Pane be­
have this way. If you drop a document onto a folder in either
pane, the document moves into the folder you dropped it on.
In contrast, if you drop a document onto the background of
the Folder Pane, the document is moved into the directory
displayed in the pane.

A scrolling list may accept a source object and insert it as a
new entry in the list. The destination application may insert
the source into the list either:

• at a location that depends on the pointer's hot spotl

1. By default, when an object is dropped on a list item, the source object is
inserted above the item it was dropped onl

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

Mini-Windows

6.A.4 The Destination

• at a location that depends on characteristics of the
source object

For example, in an alphabetical list the source object could be
inserted alphabetically by name (or by content if the source
object is a text selection).

• at a single fixed location

For example, when you drop a document onto the Print Tool
scrolling list, the document is inserted at the end of the
queue.

Scrolling lists that allow users to drop items into the list,
and/ or to drag items already in the list, should have a small
icon to the left of each item in the list.

When you drop a source object on an iconified application
base window (a mini-window), the result of the drop should
match the results of a drop method that the open base win­
dow supports. If the base window supports more than one
drop method, the mini-window should use the drop method
that is most closely associated with the base window as a
whole. For example, if the application supports a load drop
method, that drop method should be supported by the mini­
window.

Naturally, a mini-window cannot use a drop method that
inserts the source object into a data pane at the pointer's hot
spot (since the pointer's hot spot is over the mini-window,
not over a data pane). For example, a drop onto the Text Ed­
itor mini-window cannot correspond to a drop onto the Text
Editor base window's text pane, because the results of a drop
onto the text pane depend on the precise location of the
pointer's hot spot in the text pane.1

Applications should follow these guidelines in choosing a
drop method for a mini-window:

• If the associated open window uses only one drop meth­
od, and the drop method does not insert the source ob­
ject at the pointer's hot spot, then that drop method
should also be used for the mini-window.

• If the associated open window supports more than one
drop method that does not involve an insertion at the
pointer's hot spot, then the miniwindow should use the

1. We do not allow the use of the caret as a substitute for the pointer hot spot.

363

www.manaraa.com

Window Backgrounds

The Workspace

364

drop method that is most closely associated with the
base window as a whole.

• If the associated open window has a drop method which
loads the source object into the application (replacing
the data there) that drop method should be used for the
mini-window.

• If the associated open window allows drops onto its
header, dropping onto the header should have the same
effect as dropping onto the mini-window.

Applications may not allow objects to be dropped the back­
grounds of open windows, except, in some cases, onto the
window header.1 In addition to the header, the background
of a window includes:

• the footer
• areas to the left and right of data panes, excluding areas

immediately adjacent to scrollbar drag boxes and cables
• the backgrounds of control areas.

When an application wants to provide a drop method that
there is no obvious receptacle (i.e., destination object) for, the
application should use a drag and drop target in a control
area. For example, when an application supports a load drop
method, a drag and drop target should be provided for it.
Applications that don't have control areas may use their win­
dow headers instead of drag and drop targets.

Dropping an object onto the workspace should not cause the
object to transform, such as becoming a mini-window for a
running application (which is what File Manager does).

In the future, it may be possible to drop data objects onto
the workspace and have them appear to rest on the work­
space. However, because there is presently no mechanism in
place for displaying data objects on the workspace, this
guideline represents a long-term objective. It is included here
as a hint to applications about how we intend to use the
workspace in the future. Also, it is intended to preclude ap-

1. Drops onto the background are not allowed for two reasons. First, a back­
ground should be a neutral zone, which means that it should not have mag­
ical properties, such as the ability to accept dropped objects. Second, if a
background had a drop method and elements on it had other drop methods,
it could be difficult for users to predict the effects of a drop. In cases where
a destination doesn't have a clear boundary, as a text field doesn't, it would
be hard to know where one destination object ends and the other begins.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

Drag and Drop Targets

6.A.4 The Destination

plications from using drops onto the workspace for other
purposes.

If an application wants to support a drop method and there
is no obvious destination receptacle for the drag and drop
operation, it should use a drag and drop target. Such obvious
receptacles include text panes, single-line text fields, glyphs
displayed in non-text panes, and scrolling lists, among
others.

What Drag and Drop Targets Are. A drag and drop target
is a rectangular graphical element, typically located in a con­
trol area, whose primary purpose is to serve as a destination
for drag and drop operations. See Figure 6.A.3.

o
Figure 6.A.3. A drag and drop target.

A typical use of a drag and drop target is as a receptacle
for dropping an object to be loaded into the destination ap­
plication. Imagine an editor window that has a drag and
drop target in its control area. Imagine further that the data
pane is displaying The_Simpsons, the file currently loaded in
the editor. Imagine that this editor window supports two
types of drag and drop operations, one which uses the text
pane as a destination, and one which uses the drag and drop
target. If you drag a document-call it Bart-from File Man­
ager and drop it onto the text pane, Bart will be inserted into
The_Simpsons at the location where you dropped it. If instead
of dropping Bart onto the text pane, you had dropped it on
the drag and drop target, Bart would replace The_Simpsons
as the document presently loaded. If you had unsaved edits
in The_Simpsons, the editor would present a Notice window
asking whether you want to save them before closing The_
Simpsons.

As a secondary feature, some drag and drop targets con­
tain images which can themselves be dragged. That is, the
images can be source objects in drag operations. Consider
again the Text Editor example above. Imagine that the drag
and drop target contains a glyph which can serve as a source
object that represents the document presently loaded. For ex-

365

www.manaraa.com

366

ample, if Bart is currently loaded, you can drag the Bart im­
age out of the drag and drop target and onto the Print Tool
to print Bart. This action prints the version of Bart which cur­
rently appears in the window (which may contain unsaved
edits), and does not unload Bart from the Text Editor. See Fig­
ure 6.A.4.

iii , ...

Q!!LD~@1!:Y) Ii
But Is HOmtr and MUft ~
Simpson's oldest child and onl\l !j

, 50n. Ht Is a classl.: prt-adc.le5- iii
: I ~

Figure 6.A.4. An editor window with a drag and drop target.

Windows are not required to include a drag and drop tar­
get. When an explicit drag and drop target is used, there
should typically be only one per window or, at most, one per
control area. Multiple drag and drop targets should be used
only when the control areas in which they appear have ex­
plicit borders separating one panel from another. The drag
and drop target always applies to the entire window or con­
trol area in which it appears. In particular, drag and drop
targets should not be used to load data into single-line text
fields or other individual controls, since these objects can ac­
cept drops directly when appropriate and do not require ex­
plicit targets of their own.

An explicit drag and drop target may, however, be in­
cluded as an alternative to the primary drop site in a window
or control area-provided there is a clear primary drop site
that applies to the window or control area as a whole. In such
cases, the explicit target will indicate to the user that drops
are permitted when the presence of a drop site might not be
sufficiently obvious based on the appearance of the drop site
itself. An application whose primary drop site is a scrolling
list, for example, might choose to provide a drop target to
indicate that drops are permitted. In such cases, dropping on
the drag and drop target should have the same effect as drop­
ping on the primary drop site. Because it will typically be
smaller and thus more difficult for the user to hit, the alter­
native drop site should only be added if the primary drop site
will not be apparent to the user.

Introducing a drag and drop target to an existing applica­
tion should not cause larger, more accessible drop sites to ig-

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

6.A.4 The Destination

nore drop requests. For example, many read-only data
viewing applications permit users to drop files onto their
data panes for immediate display. This method should con­
tinue to be supported for backward compatibility with estab­
lished conventions even after a drag and drop target is
added, because it is easier for the user to point at the data
pane than at at the drag and drop target. In addition, drops
over read-only data panes do not create any ambiguity over
whether the data being dropped should replace, or be in­
serted into, the current data.

Visual Appearance of a Drag and Drop Target. As Figure
6.A.3. shows, a drag and drop target appears to be a box
whose open top is flush with the screen. The sunken appear­
ance signifies that the object is a receptacle. Drag and drop
targets have two standard sizes (see Drag and Drop Target
Engineering Specification, Section 6.A.15). The smaller stan­
dard size allows the drag and drop target to be added to the
control area that typically appears at the top of an OPEN
LOOK base window without increasing the normal height of
the control area. Drag and drop targets should use the
smaller standard size whenever the control area contains
only one row of buttons. The larger standard size provides a
target that is somewhat easier to drop on and that is also large
enough to permit the display of an application-specified im­
age inside the target's frame. The larger standard size should
be used whenever there is sufficient room in the control area
containing the drag and drop target. Drag and drop targets
can be created in arbitrary sizes if necessary, but the two stan­
dard sizes should be used whenever possible, since the size
and proportions of the target are important means of identi­
fication.

Like other standard OPEN LOOK controls, drag and drop
targets should appear only in control areas; they should
never appear in data panes. The drag and drop target is typ­
ically located in the upper right-hand comer of the control
area. When it is located in a control area above a data pane,
the drag and drop target should be right-aligned with the
right edge of the data pane. If the drag and drop target has a
textual label, the label should appear to the left of the drag
and drop target in the standard bold font and be followed by
a colon. The bottom of the drag and drop target should be
positioned slightly below the baseline of the text.

367

www.manaraa.com

368

When a window containing a drag and drop target is re­
sizable, the target should be positioned relative to the top and
right-hand edges of the window or control area. The drag
and drop target should remain in the same relative position
whenever the window is resized to ensure its continuous vis­
ibility when the size of the window is reduced. If the appli­
cation permits its window to be resized such that the drag
and drop target would extend into the space occupied by an­
other control, the drag and drop target should appear to
overlap the other control.

Drag and Drop target Content Images. In their normal
states, some drag and drop targets are empty, whereas others
contain object images. A drag and drop target is ordinarily
empty if it doesn't allow objects to be dragged out of it. These
empty drag and drop targets contain an image only while
they're processing dropped objects. This image has a grayed­
out, or busy appearance. Refer to the center figure in Figure
6.A.S. Once the drop has finished being processed, the object
image and the busy feedback vanish and the drag and drop
target is empty again.

In contrast, is a drag and drop target allows an object to be
dragged out of it, there is an object image inside the drag and
drop target at all times that dragging-out is possible. For ex­
ample, in the editor example described above, the drag and
drop target always contains an object image, except when
there is no document presently loaded in the window. The
default content image is a series of horizontal lines spaced
evenly across the receptacle. Applications may choose to pro­
vide other, customized images. The object image is overlaid
with the standard OPEN LOOK busy feedback while a drop
is being processed. After the drop completes, the object im­
age resumes its normal appearance. Refer to the right figure
in Figure 6.A.S. When a drag and drop target is inactive, the
borders of the box as well as its content and label should be
dimmed.

o
Figure 6.A.S. Drop targets: empty, busy, and containing an
image.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

6.A.S
To Copy or Not
to Copy?

6.A.S To Copy or Not to Copy?

Applications may occasionally need to display an object
that can serve as the source for a drag operation, but which
nevertheless cannot serve as a legal drop site. The standard,
/I sunken" drag and drop target should not be used in these
cases. The recommended solution is to display a glyph that
represents the data and serves as a source for drag opera­
tions. This drag source image should appear in one of the stan­
dard sizes defined for use with the drag and drop target and
should be positioned according to the same set of rules. The
drag source image should be surrounded by a one-pixel bor­
der line that matches the interior dimensions (i.e., the
"sunken" rectangle inside the bevel) of an appropriately
sized drag and drop target. In color implementations, the
border should be a standard "chiseled" line comparable to
the border of a control area.

Drag and drop targets (and drag sources) appearing in the
smaller standard size should normally use the default con­
tent image (see Figure 6.A.5) because the available imaging
area is not large enough to make distinctions between images
representing different data types practical. If an application­
specified content image is required, or if space for a larger
target is already available, the drag and drop target should
use the larger standard size, which is designed to accommo­
date a standard (32 x 32) File Manager document glyph for
the data in the window. If the content image is used to repre­
sent a specific type of data object, it should use the same im­
age that appears in the File Manager for data objects of that
type. (The application should query the classing engine for
the appropriate glyph rather than using a hard-coded image,
since users can change the glyph assigned to a particular type
of data object at any time.)

Drag and drop operations transfer an object. Transferring an
object may mean relocating a document in the file system;
loading a document into an editor; printing a document; in­
serting a text selection into a document; or any number of
other actions determined by the characteristics of the source
object, the nature of the destination application, and where
in the destination application the source object is dropped.

You can use drag operations simply to transfer a source
object, or to duplicate the source object and transfer the du­
plicate. To support these two forms of drag and drop, there
are two types of drag operations which differ in whether the
user holds down a modifier key while initiating the drag. The

369

www.manaraa.com

Unmodified Drag

370

standard form of drag and drop is the unmodified form,
where the user does not hold down a modifier key. In this
section this form is referred to as unmodified-drag. The second
form involves holding down the DUPLICATE modifier
while initiating the drag operation, and is referred to as DU­
PLICATE-drag. Whereas DUPLICATE-drag always copies
the source object, an unmodified-drag mayor may not, de­
pending on what is most intuitive in the current context.1

Because users are most likely to learn the unmodified form
of drag and drop first, and to use it when they are exploring
new drag and drop actions, it has been designed to do the
most obvious thing in a given situation. That is, it either does
or does not duplicate the source object depending on what
the source object is and what the destination is doing with it.

Typically, when a drag operation is relocating data, the
source object is not duplicated. For example, when you drag
a document from one folder to another in File manager, it is
clear that you meant to reorganize your directories, and the
document is not duplicated. Similarly, when you drag a doc­
ument from a folder onto the wastebasket, it is clear that you
meant to relocate the document to the wastebasket, and in
this case as well the document is not duplicated. Similarly,
when a drag operation loads data into an application, it does
not duplicate the data.2

By contrast, in many cases when a drag operation carries
data from one application to another, the data are trans­
formed, and the user would typically prefer that the opera­
tion not affect the original source object. For example, when
you drag a document form the File manager onto the Print
Tool, the data are transformed into a hardcopy document,
and you are not likely to want to lose the original document.
As another example, consider dragging a message from Mail
Tool onto calendar Manager. This action transforms the mail
message into a scheduled appointment, assuming the mail
message is formatted correctly. In this case as well, it is not
clear that a user would be happy to lose the original mail
message.

1. Another type of drag operation may be added in the future to support link
creation.
2. In fact a copy of the source object is loaded. However, from the user's
perspective he or she is operating on the original object, since the original
source object's name appears in the destination application header, and by
default changes will ultimately be committed to the original object.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

6.A.6
Loading Data

6.A.6 Loading Data

Note that both the source and destination applications
play a role in determining whether or not an unmodified
drag operates on a duplicate of the source object. The impact
of the drag operation on the original source object in the
source application depends on where the user drops it. For
example, imagine that you drag a document from a File Man­
ager folder. The source mayor may not eventually be re­
moved from the folder, depending on whether you drop the
document on Print Tool, or on the wastebasket, or onto a load
drag and drop target in Text Editor. When a drop has been
completed, the destination application advises the source ap­
plication as to whether the source object should be removed
from its originallocation.1

Naturally, the successful completion of the drop is a nec­
essary condition for removing the source. That is, any time
that a drag and drop operation does not complete success­
fully, the source will not be removed.

In many cases, using drag and drop to load a file into a des­
tination application is identical, in effect, to loading the file
via more conventional means (such as by choosing "Open"
from the application's File menu). Specifically:

• If there are any unsaved modifications to the currently­
loaded file, a Notice window is presented that gives the
user the opportunity to save the changes.

• The currently-loaded file is closed and the new file is
loaded.

• The newly-loaded file's name and path are displayed in
the window header following the application name.

• After the user modifies the newly-loaded file, he or she
can save the changes back to the original file, typically
using "Save" in the File menu.

In other cases, a load resulting from a drag and drop op­
eration may differ in one or more regards from loading a file
via more conventional means. First, occasionally, such as
when the file is dragged from a File Manager running on a
remote machine with an inaccessible file system, only the file­
name (not the path) is accessible. In such cases the window

1. Generally, the destination application should recommend that the source
be removed only when it is clear that the user intended to relocate the source
object. The original source object should be left behind whenever it is not
intuitively obvious that the user would expect the operation to remove the
source.

371

www.manaraa.com

6A.7
Data Format
Conversion

372

header should display the filename and the name of the ap­
plication the file came from. Specifically, the window header
should display:

Current Application-Filename From Source Application

For example, if you were to drag a file called Lisa from a File
Manager running on a remote machine to a Text Edit appli­
cation window running on the local machine, the window
header should display:

Text Edit-Lisa From File Manager

Second, occasionally it may not be possible to save the
modified document back to the original file. For example, if
you had dragged the file from a File manager running on a
remote system, and the remote file Manager application then
died, you could not save the file back. In cases such as this
the "Save" item in the File menu should be inactive (i.e.,
grayed out). Users presumably will still be able to use the
"Save As" command to save the file to the local file system.
They may also be able to restart the remote file Manager and
drag the file into it.

Third, unlike the more conventional methods of loading
files, when you are loading a file via drag and drop you have
the option to duplicate the original source file, and then load
the duplicate. If you press the DUPLICATE key and then per­
form a drag operation whose drop method is a load, the
source object is duplicated in the source application and then
the copy is loaded into the destination application. Ordi­
narily, if the original source object was named "Bart", the du­
plicate is called "copy_oCBart". However, if the original
source object name begins with "copy_oC", or if there is al­
ready a file named "copy_oCBart" in the current directory,
then the duplicated name begins with the string "copy2_
oC", and so forth.

Frequently the source object is in a data format that differs
from the destination's data format. For example, imagine
that you drag some text from Text Editor into a painting ap­
plication's window and drop it onto the painting canvas.
Whereas Text Editor stores data in ASCII format, the painting
application might store it in Postscript format. In order for
the painting application to insert the source object into its
document, the source must be converted from ASCII to Post­
script.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

6.A.B
Handling Multiple
Source Objects

6.A.9
Visual Feedback
While Dragging

While Dragging Data Objects
and Containers

Ideally, when a drop entails data format conversion, the
conversion should occur transparently. That is, the user
shouldn't even need to know it happened. However, in some
cases the destination application may not be able to decide
how to handle the source data format. In those cases, the des­
tination application should let the user choose among alter­
native formats listed in a Notice window.

Typically, when the destination receives multiple source ob­
jects during a single drag and drop operation, it should treat
them as independent drag and drop events. However, they
may be treated as a single, atomic event in cases where:

• undesirable results would be obtained if all the source
objects were not successfully processed by the destina­
tion; and

• the destination can reverse the effects of any processing
already completed at the time that a failure occurs.

When the destination application treats multiple source
objects as independent drag and drop events, it should
present a Notice window for each source object that is not
successfully processed. The user may terminate processing
of all the source objects by pressing the STOP key (once).

When you begin a drag and drop operation, the pointer
changes shape and an image of the source object is attached
to the pointer to provide feedback that a drag and drop op­
eration has begun. As you drag the pointer over different
graphical objects, it changes shape to indicate whether a drop
is allowed. In addition, the prospective destination object.
For example, a folder might open to show that it can accept
the source object.

The visual appearance of the pointer, and the visual image
of the source object that the pointer drags along, differ de­
pending on whether the source object is a text selection or
not. The two sets of visuals are described in the following
sections.

When you begin dragging a data object or a container of data
objects, the pointer changes to either the move pointer or the
copy pointer (see Figure 6.A.6). It changes to the move pointer
if you initiated an unmodified-drag, and to the copy pointer
if you initiated a DUPLICATE-drag.

6.A.8 Handling Multiple Source Objects 373

www.manaraa.com

374

,
Figure 6.A.6. Normal pointer, move pointer, and copy
pointer.

In addition to changing the shape of the pointer, the source
application should attach to the pointer a graphic image to
represent the source object. See Figure 6.A.7. The source ob­
ject image should be a relatively compact representation of
the source that fits around the pointer. If the source object
itself is a small graphical object, the shape of the image that
is dragged should be the same as the shape of the original
source object. If the source object has no obvious visual rep­
resentation or is too large to be previewed in its entirety dur­
ing the drag operation, an image that is roughly the size of a
File manager glyph should be designed to represent the
source object.

Figure 6.A.7. Move and copy pointers with source images.

The source image should be transparent, and should not
have much internal detail, so that users can see through the
source image to the object underneath the pointer's hot spot.
The move or copy pointer should be placed on the source im­
age in a way that: (a) the hot spot of the pointer is as near as
possible to the middle of the source image; and (b) the "tail"
of the pointer is not obscured by the outline of the source
image. When a user drags multiple source objects at once, a
representation of the collection of source objects should sur­
round the pointer.

Feedback About Prospective Destinations. Whenever
possible, when you drag the pointer over a graphical object
on the screen during the drag operation, the drop allowed or
the drop not allowed symbol should be added to the pointer.
See image being dragged, an area equal to the size of the sym­
bol should be cleared in the center of the source image before
the drop allowed or drop not allowed symbol is added. The ob­
ject under the pointer may also change its appearance to in­
dicate that it can accept the source object.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

While Dragging a Text
Selection

6.A.9 Visual Feedback

Figure 6.A.8. Drop allowed and drop not allowed pointers.

In some cases applications may not be able to predict with
certainty whether a drop on the destination object will suc­
ceed or not. However, applications should try to be as accu­
rate as possible. So long as the feedback is typically accurate,
and errors seem like reasonable errors, users will forgive oc­
casional misinformation.

With respect to the drop allowed and drop not allowed point­
ers, three areas of the screen are considered neutral: the work­
space itself, window and control area backgrounds in
general, and the background of the data pane (if any) from
which the drag operation was initiated (all areas of the data
pane except those explicit graphical objects that are either le­
gal or illegal destinations for a drop are considered part of its
background). With one exception, the pointer image always
changes to the move or copy pointer while it is over these ar­
eas. The exception to the rule is: If an application supports
drag and drop actions within a single window, but not be­
tween windows, then the pointer should change to the drop
not allowed shape as soon as the pointer leaves the source
window.

When you begin dragging a text selection, the pointer image
changes immediately to the text move or text copy pointer, de­
pending on whether you are holding down the DUPLICATE
key. See Figure 6.A.9. These pointers include a rectangular
area containing at least the first three characters of the text
selection as a "preview" of the data being dragged. If the se­
lection contains more characters than will fit within the rect­
angle, a dimmed Move arrow follows the characters in the
rectangle.

)Just~1 'too It ~II
Figure 6.A.9. Text Move and Text Copy Pointers.

375

www.manaraa.com

376

The text move and text copy pointers in Figure 6.A.9 are
neutral pointers. In other words, they are pointers that appear
whenever the pointer's hot spot is not over graphical objects
that are either legal or illegal destinations for the drop.

Figure 6.A.tO. Text insert drop allowed pointers.

These pointer shapes appear while the pointer is over the
workspace, over the backgrounds of windows or control ar­
eas, or over objects that don't subscribe to the drag and drop
protoco1.1

When the pointer's hot spot is over a text data pane or a
text field, its image changes to one of the text insert drop al­
lowed pointers shown in Figure 6.A.1D. Specifically, the arrow
changes to look like a cross-hair. To facilitate the accurate in­
sertion of the data being dragged into the existing text, the
interior of the cross-hair itself must be transparent. Ideally,
the cross-hair pointer should be used only when the pointer
is over a drop site whose semantics call for insertion of the
data being dragged into the data at the drop site. Note that
the change to the text insert drop allowed pointer should take
place immediately when dragging a text selection in a data
pane (unless it is read only), since the text can be dropped
anywhere within the same pane.

When the pointer is over a drag and drop target (or any
other drop site where the drop semantics indicate a replace­
ment of the current data), the pointer should change to one
of the text replace drop allowed images shown in Figure 6.A.ll.
Specifically, the arrow in the pointer should change to a
bull's-eye that is the same as the drop allowed feedback used
elsewhere. If an implementation is unable to support differ­
ent pointer images over explicit drag and drop targets and
implicit drop sites (data panes or individual controls), then
the text insert drop allowed (cross-hair) pointer should be used
to provide drop allowed feedback over all legal drop sites

1. These pointers are also used over graphical objects that do subscribe to the
protocol, but for some reason cannot provide feedback about whether a
drop is allowed.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

While Dragging Selected
Data other than Text

6.A.9 Visual Feedback

(including drag and drop targets) while the text is being
dragged.

~I
Figure 6.A.ll. Text replace drop allowed pointers.

When the pointer is over a graphical object that cannot
accept the text selection as a drop, the pointer changes to one
of the text drop not allowed pointer. See Figure 6.A.12. Specif­
ically, the arrow changes to look like the drop not allowed sym­
bol shown in Figure 6.A.8 on page 375.

~I
Figure 6.A.12. Text drop not allowed pointers.

When dragging a selection containing non-text data that
does not itself represent an object or a container, the pointer
changes to the selection move or selection copy pointer, de­
pending on whether you are holding down the DUPLICATE
key. See Figure 6.A.13. These pointers are analogous to the
text move and text copy pointers shown in Figure 6.A.9 on
page 375, but they do not include any "preview" of the data
being dragged (that is, there is no indication of the actual con­
tents of the selection). The source application may choose to
include an optional glyph within the rectangular area of the
pointer to indicate the type of data being dragged (see Figure
6.A.13) but, by default, the rectangle is empty.

As in the case of text selection, the implementation should
allow for the use of both selection insert drop allowed and se­
lection replace drop allowed pointers (See Figure 6.A.13) when
it can make the appropriate distinctions between drop sites
with insert semantics and those with replace semantics. If the
implementation cannot support different pointer images
over drag and drop targets and implicit drop sites (data
panes or individual controls), then the selection insert drop
allowed (cross-hair) pointer should be used to provide drop
allowed feedback over all legal drop sites (including drag
and drop targets).

377

www.manaraa.com

During the Drop

378

When dragging selections in data planes containing se­
quential data types (that is, types such as audio that are char­
acterized by a one-dimensional array in which new data
displaces existing data at a specific insert point), the pointer
image should change immediately to the selection insert drop
allowed pointer, since an insert point must be specified even
in the source data pane.

When dragging selections within data planes containing
non-sequential data types (that is, types such as structured
graphics, in which data can be moved to arbitrary spatial 10-
cations and can overlap any data that is already displayed in
those locations), the pointer image should change immedi­
ately to the move or copy pointer. However, the pointer image
should not display the drop allowed or drop not allowed symbol
while over the original data pane, since any point in the
source data pane while over the original data pane, since any
point in the source data pane constitutes a legal drop site. In
addition to changing the pointer's shape, the source applica­
tion should attach a graphical image-as similar as possible
to the size and shape of the actual selected data-that pro­
vides a WYSIWYG preview of the effect of a drop. If the
pointer and image being dragged are moved out of the
source data pane, the appropriate selection drop allowed
pointer should be displayed whenever the hot spot is over
any legal drop spot, including other compatible data panes
or the original source data pane.

When the pointer is over a graphical object that cannot
accept the data being dragged, the pointer image changes to
one of the selection drop not allowed pointers. See Figure A.13.
As in the case of text drags, the arrow changes to look like the
drop not allowed symbol shown in Figure 6.A.S.

Figure 6.A.13. Drop feedback pointers for non-text selections.

The destination assumes a busy appearance while processing
a drop. Once the operation is complete, the destination re­
sumes its normal appearance. If the application can process
the drop in the time it would take to post and clear the busy
appearance change, then the application may choose not to
post the busy appearance.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

6.A.I0
Input Focus
Management

6.A.ll
Error Handling

6.A.I0 Input Focus Management

When you drag an object between windows, the input focus
moves to the destination window. Within the destination
window, the input focus moves to the element the object was
dropped on, assuming it is an element that ordinarily re­
ceives the input focus. For example, if you drop a text selec­
tion into a text pane, the text pane receives the input focus. If
the destination element cannot receive the input focus (as, for
example, drag and drop targets can't), the input focus goes
to the element in the window that ordinarily receives it when
the window receives the input focus.

When you drag an object from one location to another
within the same window, the input focus moves to the desti­
nation element, assuming it is capable of receiving the input
focus. If the destination element cannot receive the input fo­
cus, the input focus remains at the source location.

The best user interfaces are designed for error, and drag and
drop is no exception. Errors inevitably occur as a result of
user mistakes and as a result of system errors. Drag opera­
tions may fail for any of the following reasons:

• The user dropped the source object over a destination
that does not subscribe to the drag and drop protocol.

• The source object is of a type the destination cannot ac-
cept.

Although the visual feedback on the pointer is designed to
minimize this sort of problem, the feedback is not infallible.
And, of course, we can't count on users' actions conforming
to the recommendations of the feedback, in any case.

• For some reason the drop operation was aborted.

A drop might be aborted either because of a failure of the
transport mechanism used by drag and drop; or because of
complications the destination application encounters while
processing the drop (such as running out of space in the file
system); or for other reasons.

When a drag operation fails, either, but not both, the
source application or the destination application presents a
Notice window telling the user what has happened. During
the drag before the source application has established com­
munication with the destination, the source is responsible for
all Notice windows. After communication with the destina­
tion has been established, the destination assumes responsi­
bility for Notice windows. The application that does not

379

www.manaraa.com

6.A.12
Undoing the
Effects of Drag
and Drop

6.A.13
Canceling a Drag
Operation in
Progress

6.A.14
Deviations from
the OPEN LOOK
Style Guide1

380

present the Notice window may choose to display an error
message in its base window footer.

In cases of intra-application drags, the application may
present a message in a window footer rather than in a Notice
window. In either case, the message should explain why the
drop failed, and provide constructive guidance to the user
about how to avoid failure in the future (if possible).

You can undo the effects of a drag operation by using an
Undo menu item or command button, or the Undo function
key, in both the source and destination applications (assum­
ing the operation is undo-able).! An Undo action in the
source application undoes the effect of the drag operation on
the source; whereas an Undo action in the destination appli­
cation undoes the effect there.

If you decide to cancel a drag operation while you still have
the mouse button held down, you can press the STOP key
and then release the mouse button.

For the most part, the guidelines in this document extend the
guidelines in the OPEN LOOK Style Guide. However, a few
of the guidelines described in this document differ from
those of the style guide. Applications designed to run on Sun
workstations should follow the guidelines described here
rather those in the style guide.2

A summary of the discrepancies follows:

• Differences between unmodified-drag and DUPLI-
CATE-drag

According to the style guide, whenever a user initiates a drag
operation without holding down the DUPLICATE key (i.e.,
CNTRL), the drag operation should be interpreted as a re­
quest to relocate the source object. In other words, unmodi­
fied-drags should always be interpreted as requests to move
the source object from its original location to the destination.
In cases where such actions would result in unexpected loss
of data, the destination application may refuse to receive data

1. The Undo function key operates on the window with the keyboard input
focus.
2. Sun Microsystems, Inc. (1990) OPENLOOK Graphical User Interface Ap­
plication Style Guidelines. Reading MA: Addison-Wesley Publishing Com­
pany, Inc.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

transferred by unmodified-drag operations. The destination
application should present a Notice window to allow users
either to cancel the drag operation or to change it to a dupli­
cate operation.

The guidelines described in this document allow applica­
tions to interpret unmodified-drag operations as identical to
DUPLICATE-drag operations to prevent unanticipated loss
of data.

Refer the style guide and to the section called liTo cut or to
Copy" in Section 6.A.l of this document.

• Dropping one mini-window onto another

The style guide recommends that applications allow users to
drop mini-windows onto one another, which should transfer
or copy data from the source application to the destination
application.

This document states that when one mini-window is
dropped onto another it is as if they are resting on top of one
another on the workspace. That is, when you drop one mini­
window onto another, the destination application is not over­
laid mini-window, it is the application that owns the work­
space (Le., the window manager).

Refer to the style guide and to Section 6.A.3 of this docu­
ment.

• Dropping objects onto window backgrounds

The style guide says that a user may drop a source object onto
the background of a base window, resulting in loading the
source into the window (replacing the previous content).

This document specifies that applications should use drag
and drop targets in their control areas for this purpose. If an
application doesn't have a control area, and, consequently,
doesn't have a place to put drag and drop target, it may allow
drops onto its window header. 1

Refer to the style guide and to the section called "Drag and
Drop Targets" in Section 6.A.4 of this document.

1. Applications that convert from the old policy to the new one should pro­
vide constructive guidance in error messages to help users with the transi­
tion. Specifically, if a user drops onto the window background, the appli­
cation should present an explanatory error message that describes that the
drag and drop target (or window header) should be used in place of the
window background.

6.A.14 Deviations from the OPEN LOOK Style Guide1 381

www.manaraa.com

6.A.15
Drag and Drop
Target Engineering
Specification

382

Two standard sizes are defined for the drag and drop target.
The smaller size (see Figure 6.A.14) is used in the control area
above an OPEN LOOK base window when that control area
contains only one row of buttons. The larger standard size
(see Figure 6.A.15) is designed to display a standard File
Manager document glyph within its borders. Its dimensions
are the same for all scaling factors because the same set of File
Manager glyphs is used in all cases.

Applications can specify the position of the drag and drop
target as well as its width and height. The standard "3D" bor­
der must always be used, since this is the only aspect of the
target itself that directly identifies the drag and drop target
as an explicit drop site.

(d) Stroke width

(8) (c)

l~
I+--(b)~

Figure 6.A.14. Small drag and drop target.

Table 6.1.2. Dimensions for small drag and drop target (in
points).

10pt 12pt 14pt 19pt

(a) 19.0 21.0 23.0 30.0

(b) 14.0 15.5 17.0 22.0

(c) 2.6 3.0 3.4 4.4

(d) 0.8 1.0 1.2 1.6

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

1--· -C··
1::.-::: n· ._--- ----. ._---
~
---=:=
---iii"· _- .1. iI­_ •• r:- II. 111-... • =--:-ai-:-:-ii: · _._::u::u:!!::~JI

....

Figure 6.A.1S. Large drag and drop target.

6.A.15 Drag and Drop Target Engineering Specification

Table 6.1.3. Dimensions for large drag and
drop target (in pixels)

All

(a) 50

(b) 45

(c) 6

(d) 1

383

www.manaraa.com

6.B
Examining a
Classing
Engine
Database

384

You may use the ce_db_bui ld utility program to create an
ASCII Classing Engine database file that you may either print
out or examine using any ASCII editor. Perform the follow­
ing steps to create the readable CE database file:

1. Determine which CE database you wish to transcribe.
You may select either the user, the system, or the net­
work CE database. For the purposes of this sample,
let's create an ASCII file of the system CE database in
a file called ce. system. txt.

2. Issue the following command:

ce_db_build system -to_ascii ce.database.txt

3. If you would like to create ASCII readable files for the
user or network FE databases, substitute user or net­
work for system in the above command example.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

6.C
Vendor Data
Type
Registration

6.C.l
Drag and Drop
Data Types

6.C Vendor Data Type Registration

If you want your application to be able to exchange data with
other applications on the OpenWmdows Desktop, you will
need to make your application's file format, process types,
object types, and file attributes public. SunSoft facilitates the
desemination of this information through its Vendor Data
Type Registration program.

Registration is required for the three technologies dis­
cussed in this guide: drag and drop, Classing Engine, and
ToolTalk. As data type information is gathered, it will be pub­
licly available through the SUCCESS database, SunSoft's on­
line electronic support service for software developers.

Call the number below to receive your Vendor Registra­
tion Packet. The packet will contain detailed information on
the program, as well as the forms you need to register you
data types.

SunSoft Catalyst Information Center phone number: 1-800-227-9227

The remainder of this appendix discusses the technical is­
sues of why data types must be registered.

If a receiving application is to receive a drop from a source
application, the source application must send the data in a
format readable by the receiving application. For example, if
Text Editor wishes to drop data into Mail Tool, Text Editor
must be able to convert the data to a format which Mail Tool
can read. Conversely, if Mail Tool wishes to drop data into
Text Editor, Mail Tool must be able to convert the data to a
format Text Editor can read. Although the source application
is responsible for converting data to a format readable by the
receiving application, it behooves the receiving application
to be able to receive data in some of the more common data
formats such as ASCII, Sun raster imaging format, or Post­
Script page description language.

385

www.manaraa.com

6.C.2
Classing Engine
File Types and
Attributes
File Type Identifiers

386

Programmatically, drag and drop handshaking works as
follows: (1) data is selected from the source application; (2)
data is dropped on the receiving application; (3) the receiving
application requests a list of the data formats in which the
source application can send the drop; (4) the source applica­
tion replies with a list of data formats; (5) the receiving appli­
cation tells the source application which format it would like
the data sent; (6) data is transferred.

The SunSoft data type registration program helps stan­
dardize the data format names by which applications request
data formats from each other. All companies that wish to
share their data with other applications are encouraged to
register data format names for their application's data files.
This name will be used by other applications to reference de­
sired data formats.

A central repository for data format names, as well as ad­
ditional format information, will be available on SUCCESS,
the sunSoft on-line electronic support service for software
developers.

As described in Section 15, "Classing Engine," File Manager
and other applications identify a file's type with a unique
identifier. Once the file is typed, the file's attributes can be
determined.

The file type identifier is used to derive a file's type. File type
identifiers can be associated with a filename pattern (such as
*.ps or *.wk), a unique string value within the file, or both. If
the type-by-pattern method is used, you will need to register
a file pattern. If the type-by-content method is used, you will
need to register a content pattern, byte offset, and content
data type (short, long, string). Two file type registration ex­
amples are shown below.

1. Content Value = SSQLReport; Offset =0; Type = string

This file type can be identified by the string "SSQLReport"
starting at byte zero.

2. Content Value = Ox4d4d002a; Offset = 10; Type = long

This file can be identified by the longword value Ox4d4d002a
starting at offset 10 (decimal) in the file.

It is important that your file identifier be unique. The best
identifier is a string that identifies your company, the appli­
cation, and the file type.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

File Type Attributes File type attributes are used to specify the correct method to
open or read the file, print the file, and the display icon. The
current Classing Engine database attributes are shown be­
low. Refer to Section 15, "Classing Engine," for more infor­
mation on these attributes.

Table C.l. Classing engine database attributes.

Attribute

TYPE_NAME

TYPE_OPEN

TYPE_PRINT

TYPE_ICON

TYPE_I CON_MASK

TYPE_FGCOLOR

TYPE_BGCOLOR

TYPE_OPEN_TT

TYPE_FILE_TEMPLATE

File Type and
Attribute Reference

6.C.3
ToolTalk Type
Information

6.C.3 ToolTalk Type Information

Description

File type name.

String used to open the file.

String used to print the file.

icon file $OPENWINHOME/include/images/compress. icon

icon file, <$OPENWINHOME/ include/ images/doc .mask. icon

Icon foreground color.

Icon background color.

ToolTalk identifier used when starting applications.

Unique filename generated and used by the application as a
filename.

If you want to peruse a file of previously registered file types,
you may view the Classing Engine database by using the pro­
gram mapl. c in the Classing Engine chapter, or use the ce_
db_bui ld utility to create an ASCII description file.

ToolTalk messages can be addressed to specific application,
a type of application, a specific object, or a type of object. To
send messages addressed to types of applications or objects,
you must know the application's process type or object type.
It is the name of an application's process types and object
types that need to be registered. For more information on
process and object types, see the ToolTalk Programmer's Guide.

To provide process type and/ or object type information to
the ToolTalk service you must supply static type information
at installation time by compiling your type file (which puts

387

www.manaraa.com

Process Type

Object Type

Ptype and Otype
Reference

388

your type information into the Classing Engine database)
and register your process type with the Tooltalk service.
When you register your ptype with the ToolTalk service, it
will read the type information from the Classing engine da­
tabase. If you use otypes, you need to also create a ptype
for your application.

To send messages to a particular type of application, an ap­
plication needs to know the process type (ptype) of the re­
ceiving application(s). The ptype is identified by the process
type identifier (ptid). Aptid must be unique for every in­
stallation. This identifier cannot be changed at installation
time, so it is important that a unique name be chosen. Ideally
you will use a name that includes the trademarked name of
your product or company, such as Sun~Edi tDemo. Also, use
upper-case letters to help make your pt i d unique. The pt i d
cannot exceed 32 characters, and should not be one of the
reserved identifiers (start, queue, file, session,
observe, handle, ptype, otype, per_file, per_
session, and opnum).

To send messages to a particular type of object, an application
needs to know the object type (otype). The otype is identi­
fied by the object type identifier (otid). An otid must be
unique for every installation. This identifier cannot be
changed at installation time, so it is important that a unique
name be chosen. It is recommended that the name begin with
the ptid of the tool that implements the otype; e.g., Sun_
Edi tDemo_obj ect. The ot id is limited to 64 characters,
and should not be one of the reserved identifiers (start,
queue, file, session, observe, handle, ptype,
otype, per_file, per_session, and opnum).

If you want to peruse a file of previously registered ptypes
and otypes, you may view the Classing engine database by
using ce_db_build utility to create an ASCII file.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

6.D
DeskSet
Defined
ToolTalk
Messages
6.D.l
Sender to Handler
Messages

This appendix lists the initial set of ToolTalk messages that
many DeskSet applications support. Each individual appli­
cation is responsible for handling these messages. Note that
some applications may determine that more specialized mes­
sages are required for their interaction and add these to the
list of messages that they can handle. For further informa­
tion, refer to the ToolTalk Programmer's Guide.

The majority of the messages are ones that are sent form a
sending process to a handling process. A launch message
must be sent first to start the handling application. After this,
messages may be sent in any order. Typically, one application
would launch another, send the appropriate data using the
dispatch_data message, send the move message to posi­
tion the handler's base frame at a desired location and finally
send an expose message to force the handler to appear.

The messages are:

launch (
string display
string locale)

Start the handling application. The first argument is the dis­
play on which the application should be started. This should
be the same display on which the sending application is run­
ning. The second argument indicates which language should
be used to display text.

status(string status_string)

Sends any status information that the sending process feels
the handling process should know about. The handling pro­
cess will determine what to do with this status. An example
of the status a sending process might send would be the
name of the sending application, which the handling process
could then display in its footer to let the user know which
application controls it at the moment.

dispatch_data(string sel_name)

6.0 DeskSet Defined ToolTalk Messages 389

www.manaraa.com

6.D.2
Handler to Sender
Messages

390

Sender wants to send data to the handler. The sel_name is
the selection name used for the data transfer. The handler
may then access this selection and retrieve the data.

move(int xpos,
int ypos,
int width,
int height,
int placement)

The sending process would like the handling process to
move its (the handling processes) base frame to a new posi­
tion. Arguments are the sender's frame location (x and y co­
ordinates), sender's frame size (height and width) and a hint
as to where the handler should position itself (one of the fol­
lowing values DS_POPUP _LEFT, DS_POPUP _RIGHT,

DS_POPUP_ABOVE, DS_POPUP_BELOW, DS POPUP_

LOR, DS_POPUP_AOB).

quit ()

The sending process would like the handling process to exit.

hide ()

The sending process would like the handling process' win­
dow to disappear, but not exit.

expose ()

The sending process would like the handling process' win­
dow to appear.

retrieve_data(in string sel_name)

The sending process would like the handling process to send
back any data that it has manipulated. The argument is the
selection name used for the data transfer.

Currently, there is only one message that a handling process
initiates. In this case I the sending processes must be able to
handle this message when it is received.

depart ing ()

The handling process tells the sending process that it is going
to exit.

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

6.E
ToolTalk
Example
Program

6.E.1
treceive.c

This appendix presents two code examples (ttecei ve. c
and t t send. c) and a header file (t t di g . h) which illustrate
the use of ToolTalk service.

/*
* ttreceive - show receiving tooltalk message based on pattern.
*
* This simple example program is the counterpart to ttsend. It registers
* a pattern which describes the message it is interested in, and then
* waits for them.
*/

#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/tt_c.h>

#include nttdig.h n

Frame base_frame;
Panel_item controls;
Panel_item gauge;

char *my-procid;

void receive_tt_message();
void create_ui_components();
void
main (argc, argyl
int argc;
char **argv;

int ttfd;
Tt-pattern pat;

/* Initialize XView. */
xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, 0);

6.E ToolTalk Example Program 391

www.manaraa.com

/* Tell XView to call my receive procedure when there are messages. */

notify_set_input_func(base_frame,

/*

(Notify_func)receive_tt_message, ttfd);
/*
* Create and register the pattern we are interested in. We are
* registering as an observer; all observers will receive a message
* destined for them (try a few ttreceives). If we had registered
* as a TT_HANDLE, we would be the one to handle the message.
*/

pat = tt-pattern_create();
tt-pattern_category_set(pat, TT_OBSERVE);
tt-pattern_scope_add(pat, TT_SESSION);
tt-pattern_op_add(pat, RECEIVE_PATTERN);
tt-pattern_register(pat) ;

/* Join the default session to get messages. */

tt_session_join(tt_default_session()) ;
xv_main_loop(base_frame) ;

/* Clean up ToolTalk on exit. */
tt_close () ;
exit (0) ;

* receive_tt_message is the procedure that gets called by the XView
* notifier when my tool talk file descriptor becomes active with a message.
*/

void
receive_tt_message()

Tt_message msg_in;
int mark;
int val_in;

/*
* Pull in my message handle. If it is null, we became active even
* though there wasn't a real message for us.

392

*/
msg_in = tt_message_receive();
if (msg_in == NULL) return;

Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

/*
* Get a storage mark so we can free storage that tt obtains for
* our message contents.
*/

mark = tt_mark();

/* If the message pattern matches our interest, fetch the value. */

if (O==strcmp(RECEIVE_PATTERN, tt_message_op(msg_in))) {
tt_message_arg_ival(msg_in, 0, &val_in);
xv_set (gauge, PANEL_VALUE, val_in, NULL);

tt_message_destroy(msg_in) ;
tt_release(mark) ;
return;

/*
* create_ui_componentsis the procedure called to set up the panel.
*/

void
create_ui_components()
{

base_frame xv_create (NULL, FRAME,
XV_LABEL, "TT Receiver Example",
FRAME_SHOW_RESI ZE_CORNER, FALSE,
NULL) ;

controls xv_create (base_frame, PANEL,
WIN_BORDER, FALSE,
NULL) ;

gauge xv_create (controls, PANEL_GAUGE,
PANEL_LABEL_STRING, "Received:",
PANEL_MIN_VALUE, RECEIVE_MIN,
PANEL_MAX_VALUE, RECEIVE_MAX,

PANEL_SHOW_RANGE, FALSE,
NULL) ;

window_fit (controls) ;
window_fit (base_frame) ;

6.E.l treceive.c 393

www.manaraa.com

6.E.2
tsend.c

/*
* ttsend - Demonstrate sending a message with a particular pattern.

*
* This simple program is the counterpart to ttreceive. It sends
* a message with a particular pattern that all receivers that are
* listening will receive.

*
*/

#include <xview/xview.h>
#include <xview/panel.h>
#include <xview/tt_c.h>

#include "ttdig.h"

Frame base_frame
Panel item controls;
Panel_item slider;

char *my-procid;

void broadcast_value();
void create_ui_components();

void
main(argc, argv)
int argc;
char **argv;

/* Initialize XView and Tooltalk; enter XView main loop. */
xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, 0);
create_ui_components() ;
my-procid = tt_open();
xv_main_Ioop(base_frame) ;
/* Clean up ToolTalk on exit. */
tt_close () ;
exit(O) ;

394 Chapter 6. Integrating Applications on the Sun Desktop

www.manaraa.com

/*
* broadcast_value is the procedure that gets called when you
* release the slider. It gets the current slider
* Value and broadcasts it with ToolTalk.
*/

void
broadcast_value (item, value, event)
Panel_item item;
int value;
Event *event;

Tt_message msg_out;
/* Create and send ToolTalk msg. */
msg_out = tt-pnotice_create(TT_SESSION, RECEIVE_PATTERN);
tt_message_arg_add(msg_out, TT_IN, "integer", NULL);
tt_message_arg_ival_set(msg_out, 0, value);
tt_message_send(msg_out) ;

/* Destroy the handle since we don't expect a reply. */
tt_message_destroy(msg_out) ;

/*
* create_ui_components is the procedure called to set up the panel.
*/

void
create_ui_components()
{

base_frame xv create NULL, FRAME,
XV_LABEL, "TT Send Example",
FRAME_SHOW_RESIZE_CORNER, FALSE
NULL) ;

controls xv_create (base_frame, PANEL,
WIN_BORDER, FALSE,
NULL) ;

slider xv_create (controls, PANEL_SLIDER,
PANEL_LABEL_STRING, "Send:",
PANEL_SLIDER_END_BOXES, FALSE,

PANEL_SHOW_RANGE, FALSE,
PANEL_SHOW_VALUE, FALSE,
PANEL_MIN_VALUE, RECEIVE_MIN,
PANEL_MAX_VALUE, RECEIVE_MAX,
PANEL_TICKS, 0,
PANEL_NOTIFY_PROC, broadcast_value,
NULL) ;

window_fit(controls);
window_fit(base_frame);

6.E.2 tsend.c 395

www.manaraa.com

6.E.3
tdig.h

/*

* RECEIVE_PATTERN is the message identifier for our tooltalk messages.
* It is prefixed with Sun_ as a simple mechanism to avoid namespace
* conflicts with other apps in the default session.
*/

#define RECEIVE_PATTERN "Sun_ttexampleJ)attern"

/*
* RECEIVE_MIN and _MAX is our slider/gauge range.
*/

#define RECEIVE_MIN 0
#define RECEIVE_MAX 100

396 Chapter 6. Integrating Applications on the Sun Desktop

