Software Engineering
on Sun Workstations®

Blll Cureton
Editor

Software Engineering

on Sun Workstations®

Bill Cureton
Editor

Software Engineering on
Sun Workstations®

&

Springer-Verlag
New: YorkBerlin.-Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest

Bill Cureton

INFO Enterprises

Gateway 1

426 North 44th St., Suite 250
Phoenix, AZ 85008-7689 USA

Library of Congress Cataloging-in-Publication Data

Software engineering on Sun workstations / Bill Cureton, editor.
p. cm.

Includes index.

ISBN-13: 978-1-4613-9120-3 e-ISBN-13: 978-1-4613-9118-0
DOI: 10.1007/978-1-4613-9118-0
1. Software engineering. 2. Sun computers-Programming.

I. Cureton, Bill.

QA76.758.5646455 1993

005.1-dc20 93-17488

Printed on acid-free paper

©1993 Springer-Verlag New York, Inc.
Softcover reprint of the hardcover 1st edition 1993

This is a Springer-Verlag title published by TELOS, The Electronic Library of Science, a Springer-Verlag imprint, Santa
Clara, CA, USA.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of
the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts
in connection with reviews or scholarly analysis. Use in connection with any form of information storage and re-
trieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.

Portions of this book include text and code examples taken from several Solaris® manuals, including OpenWin-
dows™ V3 User’s Guide, OpenWindows V3 DeskSet™ Integration Guide, ToolTalk™ 1.0 Programmer s Guide, all
copyrighted©1991 by Sun Microsystems, Inc. and used with permission. The book does not necessarily represent the
views, opinions, or product strategies of Sun Microsystems or its subsidiaries.

Sun is a trademark of Sun Microsystems, Inc. Reference to “Sun” and any other trademarks of Sun Microsystems,
Inc., in the book or the series title are for descriptive purposes only, and do not imply any connection with or impri-
matur from Sun Microsystems, Inc. or any of its subsidiaries. The opinions and information contained in this book
are those of the author(s) alone, and do not represent the views, opinions, or product strategies of Sun Microsystems,
Inc. or its subsidiaries. Sun Microsystems, Inc. is not responsible for its contents or its accuracy, and therefore makes
no representations or warranties with respect to it.

All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC In-
ternational, Inc. SPARCompiler™, SPARCworks™, and SPARC® Performance by Design, are licensed exclusively to
Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Mi-
crosystems, Inc.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not
especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise
Marks Act, may accordingly be used freely by anyone.

Production managed by Karen Phillips; manufacturing supervised by Vincent Scelta.
Photocomposed pages prepared from the editor's Framemaker files.

987654321

Dedication

This humble edited tome is dedicated to the four most
important people in my life. They are, my parents, who
bought me the books and sent me to school, and my wife,
who made me finish school and this book as well, and to
my son Nicky who is just now learning to read and is
starting school!

Acknowledgments

I wish to acknowledge the major contribution of many, many
individuals in the creation and final preparation of this book.
In fact, like many Academy Award acceptance speeches,
there were, in reality, so many people involved with this
project that some individuals are bound to be overlooked. I
apologise.

First, | want to thank everyone directly involved from Sun
Microsystems®. Many of the chapters in this book had their
genesis as technical publications written and polished by en-
gineers and technical writers. The list is simply too long to
mention, and in some cases, while doing my research, I had
discovered that the identity of many of the original authors
had become obscured by time and revisions. Perhaps in a
Second Edition I may be fortunate enough to identify key
contributors by name. A few include Steve Muchnick, Vida
Ghodssi, Keith Bierman in SunPro, and Pierre Bedard, Steven
Uhlir and the ToolTalk team in SunSoft.

I also want to thank Bill Joy, John Gage, and George Sy-
mons for their continued encouragement with this project.

Finally, a deep debt of gratitude is due to the fine people
at Springer-Verlag and TELOS in Santa Clara, CA, without
whom this book would have never come together. I wish to
thank my publisher at TELOS, Allan Wylde, Telos Publishing
Associate Cindy Peterson, and the book production staff at
Springer-Verlag New York.

Editor’s Note

Between the time this project was begun back in 1992 and the
Summer of 1993 several important events that will directly
affect the use of Sun Workstations® in application develop-
ment, and the entire computing landscape, have transpired.

First, and perhaps most importantly, in early 1993 the
Common Operating System Environment or COSE consor-
tium was announced. This group, led by Novell, USL, ATT,
NCR, Sun, HP and others, is attempting to create a common
operating environment based on Unix SVR4, from the re-
maining fragmented elements of the Unix camp. They are
motivated, no doubt, by the threat, real or perceived, from
that other OS juggernaut, Windows-NT from Microsoft. One
important factor that will affect the reader of this edition of
this book is that the sections discussing OpenLook and its
associated DevGuide G.U.L builder will need to be reas-
sessed in light of Sun Microsystems apparent intent to sup-
port Motif in conjunction with the COSE architecture and
strategy. This evolving situation will need to be “actively”
monitored by anyone interested in developing applications
on and for Sun Workstations in the future. The inevitability
of Motif-on-Sun will elicit a sigh-of-relief from certain quar-
ters.

Second, the Solaris® OS has gone through a profound
metamorphosis in the period during which this book was
compiled. The key elements of this change reflect the
“switch” to the SVR4 base, the addition of support for sym-
metric multi-processing, and multi-threading. The latter two
features are powerful enhancements. They will need to be
supported by a new generation of development tools. Per-
haps a future edition of this book will include chapters on
these new developments.

Third, the movement towards the object-oriented para-
digm is one of Sun Microsystems most compelling strengths
in the next generation of software development. Sun Micro-
systems has played a seminal role in the creation and evolu-
tion of the C++ programming language, and Sun is one of the
original co-founders of the Object Managment Group OMG
(Cambridge, MA). Anyone interested in advanced object-ori-
ented development is encouraged to track the startling
progress of the OMG since 1989.

Finally, a few of the programming languages that began in
1992 as “Sun Core Programming Language” have been “re-
turned” to their roots, as it were, for ongoing maintenance
and enhancement. These are most notably “SunCommon
Lisp™” which is now offered and maintained by Lucid
(Menlo Park, CA) and “SunCobol™” which is now offered
and maintained by MicroFocus (Palo Alto, CA).

[sincerely hope you find this book useful. The publisher
and [would like to hear from you. If, indeed, you are devel-
oping client-server applications on and for the Sun platform
you have chosen one of the best all-around development and
runtime environments in the technical and business com-
puting world today.

Bill Cureton

Phoenix, AZ
August 1993

Editor’s Note

Contents

Acknowledgments
Editor’s Note .

CHAPTER 1 ToolTalk® Overview.

1.1
12
1.3
1.4
1.5
1.6
1.7

Introduction . .
General Application Requlrements .
Message Patterns .

Sending Messages .

Receiving Messages .

Objects. . .

ToolTalk API.

CHAPTER2 SPARCompiler™ Compilation Technology

2.1
22
2.3
2.4
25
2.6
27

Introduction . . .
SPARCompiler Famlly Overview.
C, C++, FORTRAN and Pascal
Ada. .

Sun Common LlspTM .

Sun COBOL™ .

References

2.A Appendix A;Oftlmlzanon Definitions

vii
ix

18
29
46

70
79

177

177
178
179
188
192
200
204
204

CHAPTER3 The SPARCworks™ Programming Environment .

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Introduction. . . .
SPARCworks Manager .
SourceBrowser .

Debugger. .
Using SourceBrowser with Debugger .
Analyzer .

FileMerge.

MakeTool.

Conclusion .

CHAPTER4 Integrating Development Tools with SPARCworks

41
4.2
4.3
4.4

SPARCworks Tool Integration
SPARCworks Manager .

Integrating Development Tools with the ToolTalk Service

SPARCworks Manager and dbx Protocols

CHAPTER5 Devguide—The Open Windows G.U.L. Builder.

5.1
52
53
5.4
5.5
5.6
5.7

Introduction .

Overview. .

What does Devgulde do for You?

Choosing a Code Generator

Common Problems and Recommended Solutlons
Similar Products

Conclusion .

CHAPTER 6 Integrating Applications on the Sun Desktop .

6.1
6.2
6.3
6.4
6.A
6.B
6.C
6.D
6.E

xii

Introduction .
Selections. .
Drag and Drop .
Classing Engine

Appendix A—Drag and Drop User Interface Spec1f1cat10n

Appendix B—Examining a Classing Engine Database
Appendix C—Vendor Data Type Registration . .
Appendix D—DeskSet Defined ToolTalk Messages
Appendix E—ToolTalk Example Program

209

209
210
211
219
225
226
236
238
244

247

247
249
261
271

277

277
279
280
287
291
294
296

297

297
304
307
323
355
384
385
389
391

Contents

CHAPTER

ToolTalk® Quverview

1.1
Introduction

1.1.1
ToolTalk
Scenarios

Software Engineering

The Tool Talk® service is used by independent applications to
communicate with each other without having direct knowl-
edge of each other. Applications communicate by creating
and sending ToolTalk messages. The ToolTalk service re-
ceives these messages, determines the recipients, and then
delivers the messages to the appropriate applications. See
Figure 1.1.1. Before modifying your application to use the
ToolTalk service, you must define (or locate) a message pro-
tocol: a set of ToolTalk messages describing operations that
applications agree to perform. The message protocol specifi-
cation includes the set of messages and how applications
should behave when they receive the messages.

To illustrate the use of the ToolTalk service, here are two sce-
narios of applications working together to help users solve
their work problems. The message protocols used in these
scenarios are hypothetical.

In computer-aided software engineering (CASE), the Tool-
Talk service provides a way to connect and coordinate indi-
vidual programs in a programming environment. For this
scenario, a tool manager, graphical debugger, call grapher,
editor, and source browser are all tools used in this ToolTalk-
based developer’s environment. These tools have been mod.

Application

Application

Application Application

The ToolTalk Service

Figure 1.1.1. Applications using the ToolTalk service to communicate.

Table 1.1.1. CASE message protocol.

Message

Description

Started

Informs tool manager that this tool is started.

Stopped

Informs tool manager that this tool is stopped.

Launch

Requests a certain tool to start.

Quit

Requests a certain tool to stop.

Display

Requests that a tool that can edit a file load the file and scroll the file to
a particular line number.

CallGraphFunction

Requests that a tool that can graph calls display the graph for this
function in this file that is part of this program.

GetSelection

Requests that the tool with the current selection return the file name
and line number.

ified to use the ToolTalk service and implement the messages
shown in Table 1.1.1.

To determine what's causing a particular error message, a
programmer starts the tool manager, a program used to co-
ordinate the development tools in the environment. From the
tool manager, the programmer double-clicks on the source
browser and graphical debugger icons to start them. The tool
manager sends a Launch message to each tool and as they

Chapter 1. ToolTalk® Overview

Computer-Aided
Design

1.1.1 ToolTalk Scenarios

start, they send a Started message to the tool manager with
initialization information.

The programmer loads a source code file in the source
browser and finds out where the error message is located in
the source code. After selecting the text of the error message,
the programmer moves to the graphical debugger and selects
a “Set BreakPoint” menu item. The debugger sends a GetSe-
lection message to the tools currently running in the environ-
ment (in this case, just the source browser.) The source
browser returns the file name and line number and the de-
bugger loads the file, moves to the line number, and sets the
breakpoint.

The programmer then runs the program and locates the
call that results in the error message. A feature of the debug-
ger is the menu item, “Show Call Graph”. After this menu
item is selected, the debugger sends a CallGraphFunction
message. The ToolTalk service starts up the installed call gra-
pher if one isn’t already running and delivers the message.

The call grapher loads the call graph for the specified file
and scrolls to the specified function. The programmer sees
another function that looks suspicious that’s called just be-
fore the function producing the error. The programmer dou-
ble-clicks on the suspicious function and the call grapher
sends a Display message.

The ToolTalk service starts an editor and delivers the Dis-
play message. The editor loads the file and scrolls to the spec-
ified line number where the engineer discovers an error.
After fixing the error, the programmer stops work by asking
the tool manager to shut down all the tools. The tool manager
sends Quit messages to all tools that are currently running.
The tools clean up, send a reply to the Quit message, and exit.

In the computer-aided design (CAD) of hardware compo-
nents, tools that are able to communicate with each other
help automate the design process for the hardware engineer.
In this scenario, there is a tool control program that orches-
trates tool sequences and CAD tools that have been modified
to use the ToolTalk service. All use a CAD message protocol
that includes the messages shown in Table 1.1.2

The design engineer begins work by starting the tool con-
trol program. As a new tool is needed in the design sequence,
the engineer starts the tool from the control program. Each
tool initializes with the ToolTalk service and sends out a Tool-

Started message to notify the control program that it is now
running.

Table 1.1.2. CAD message protocol.

Message Description

ToolStarted Informs interested tools that this tool started running.

ToolFinished Informs interested tools that this tool has stopped running.

DesignOpened Informs interested tools that a particular design data set was opened
for access.

DesignWrite Requests a certain tool to begin writing to a particular design data set.

DesignWriteDone Informs interested tools that a particular design-write operation has
been completed.

DesignRead Requests a certain tool to begin reading a particular design data set.

DesignReadDone Informs interested tools that a particular design-read operation has
been completed.

1.1.2
How

The engineer begins work by loading a design into a PC
layout tool for editing purposes. When the tool has loaded
the design, it sends out a DesignOpen message, which noti-
fies other tools in the environment that it has opened the file
and begun to write design data. When the engineer has fin-
ished editing the data, the layout tool sends a DesignWrite-
Done message, which signals the control program. (In this
protocol, only the control program registers interest in the
DesignWriteDone message.)

The control program then sends a DesignRead message to
the next tool required in the design sequence. After the next
tool reads the design, it sends a DesignReadDone message to
notify others that it as finished.

As mentioned earlier applications create, send, and receive
ToolTalk messages in order to communicate with each other.
Sending applications create, fill in, and send a message; the

App lications Use ToolTalk service determines the recipients and delivers the

ToolTalk

message to the receiving applications. Receiving applica-
tions retrieve messages and after examining the information
in the message, either discard the message or perform an op-
eration and reply with the results.

Animportant ToolTalk feature is that sending applications
need to know little about the receiving application. This is

Chapter 1. ToolTalk® Overview

Registering Interest
in ToolTalk Messages

Sending ToolTalk
Messages

1.1.2 How Applications Use ToolTalk

because applications that want to receive messages register
their interest in specific types of messages with the ToolTalk
service.

The reason that sending applications need to know little
about the receiving application is because applications that
want to receive messages explicitly state what these mes-
sages should look like. This information is registered with
ToolTalk in the form of message patterns. These message pat-
terns usually match the message protocols that applications
have agreed to use. Applications can add more patterns for
individual use.

Message patterns are created much like a message is cre-
ated; the same type of information is used in both. For each
type of message an application wants to receive, it obtains an
empty message pattern, fills in the attributes, and registers
the pattern with the ToolTalk service.

When the ToolTalk service receives a message from a
sender, it compares the information in the message to the pat-
terns that are registered. Once matches have been found, the
ToolTalk service delivers copies of the message to all recipi-
ents.

For each pattern describing a message it wants to receive,
an application declares whether it can handle the message or
just wants to observe it. Although many applications can ob-
serve a message, only one application can handle it to ensure
that a requested operation is performed at most once. If the
ToolTalk service cannot find a handler for a message, it re-
turns the message to its sender indicating that delivery
failed.

Applications provide message patterns to the ToolTalk
service at installation time and/or while the application is
running.

To send a ToolTalk message, an application obtains an empty
message, fills in the message attributes, and sends the mes-
sage. ToolTalk messages are simple structures containing
fields for address, subject, and delivery information. To send
a ToolTalk message, an application need only provide this
information:

¢ Should the recipient respond to the message; is this a
notice or a request?

Receiving Toollalk
Messages

1.1.3
ToolTalk
Messaging
Methods

* What operation should be performed/has been per-
formed? Are there arguments needed to perform the op-
eration?

* What interest does the recipient share with the sender;
is the recipient running in a specific user session or in-
terested in a specific file?

To help narrow the focus of the message delivery, an ap-
plication can provide more information in the message. See
Section 4, “Sending Messages,” for a complete listing and de-
scription of ToolTalk message attributes.

When the ToolTalk service determines that a message needs
to be delivered to a specific process, it creates a copy of the
message and notifies the process that a message is waiting. If
a receiver is not running, the ToolTalk service looks for in-
structions (provided by the application at installation time)
on how to start the application.

The process retrieves the message and examines its con-
tents. The message may contain a notice that some operation
has been performed. In this case, the process discards the
message after reading the information. If the message con-
tains a request to perform an operation, the process performs
the operation and returns the result of the operation in a reply
to the original message. Once the reply has been sent, the
process can discard the original message.

The ToolTalk service provides two methods of addressing
messages: process-oriented and object-oriented messaging.
Process-oriented messages are messages addressed to pro-
cesses. Applications that create a message address it to either
a specific process or a particular type of process. Process-ori-
ented messaging is a good way for existing applications to
begin communicating with others. Modifications for sup-
porting process-oriented messaging are straightforward and
usually take a short time to implement.

Object-oriented messages are messages addressed to objects
managed by applications. Applications that create a message
address it to either a specific object or a particular type of
object. Object-oriented messaging is particularly useful for
applications that currently use objects or are being designed
around objects. Even if an existing application is not object-
oriented, the ToolTalk service provides a way for you toiden-
tify portions of application data as objects so that applica-
tions can begin communicating about these objects.

Chapter 1. Tool Talk® Overview

Process-Oriented
Messaging

Processes

Sessions

1.1.3 ToolTalk Messaging Methods

Process-oriented messaging provides a communication path
between applications to deliver information or request that
an operation be performed by the process receiving the mes-
sage. To use process-oriented messaging, you need to be fa-
miliar with these ToolTalk concepts:

¢ Processes
¢ Sessions
¢ Files

One execution of an application, tool, or program that uses
the ToolTalk service is called a process in this book. A process
is a SunOS process that has initialized and registered with the
ToolTalk service.

Procid. When a process opens communication with the
ToolTalk service, it receives a process identifier (procid). Ap-
plications who want to send a message to a specific process
must know the receiving application’s procid. To find out this
information, the sender can look at a previous message sent
by the target application. The ToolTalk service automatically
fills in a message’s sender attribute with the sender’s procid.

Ptype. You can instruct the ToolTalk service to consider
your application as a potential message receiver when no
process is running the application. This is done by providing
message patterns and instructions for starting the applica-
tion in a process type (ptype). The ptype file is compiled with
the ToolTalk type compiler, tt_type_comp, at application in-
stallation time to make the information available to the
ToolTalk service.

When an application has a ptype, part of the registration
and initialization activities include registering the ptype with
the ToolTalk service. Registering a ptype will automatically
register the message patterns listed in it.

A group of processes running in the same X session or pro-
cess tree session is called a session in this book. A session also
contains an instance of the ToolTalk communication pro-
gram, ttsession.

When a process opens communication with the ToolTalk
service, the process that actually provides the procid is ttses-
sion. A side effect of opening ToolTalk communication is that
the session in which the action takes place becomes the de-
fault session for the process.

Files

Object-Oriented
Messaging

ToolTalk Objects

The concept of a session is important in the delivery of
messages. Senders can “scope” a message to a session and
the ToolTalk service will deliver it to all processes that have
message patterns that refer to the current session. To update
message patterns with the current session identifier (sessid),
applications “join” the session.

A container for data that is of interest to applications is called
a file in this book. The concept of a file is important in the
delivery of messages. Senders can scope a message to a file
and the ToolTalk service will deliver it to all processes that
have message patterns that refer to the file without regard to
the process’s default session. To update message patterns
with the current file pathname, applications “join” the file.

It is also possible to scope a message to a file within a ses-
sion. The ToolTalk service will deliver the message to all pro-
cesses that refer to both the file and session in their message
patterns.

To use object-oriented messaging you need to be familiar
with the process-oriented messaging concepts plus the
ToolTalk concept of “object”.

A ToolTalk object is a piece of application data for which a
ToolTalk object specification has been created. Object data is
stored in two parts as shown in Figure 1.1.2. One part is called
the object contents, and is managed by the application that
creates it. An object’s contents is typically a piece, or pieces,
of an ordinary file: a paragraph, a source code function, or a
range of spreadsheet cells, for example.

f———object \

object spec p» managed by the ToolTalk service,

stored in the ToolTalk database

file object content = managed by application,

stored in file

Figure 1.1.2. ToolTalk object data.

The second part of an object’s data is the object specification
(spec). Applications create and write specs to the ToolTalk da-

Chapter 1. ToolTalk® Overview

1.14
ToolTalk
Architecture

1.1.4 ToolTalk Architecture

tabase managed by the ToolTalk database program, rpc.ttdb-
serverd.

A spec contains standard properties, such as the type of
object, the name of the file in which the object’s contents are
located, and the object’s owner. Applications can also add
their own properties to a spec, such as the location of the ob-
ject within a file. Because applications can store additional
information in specs, you can identify data in existing files as
objects without changing the formats of the files. You can also
create objects of pieces of read-only files.!

Object Types. When a message is addressed to a specific
object or a type of object, the ToolTalk service must be able to
determine to which application to deliver the message. Ap-
plications provide this information in object types (otypes). An
otype file contains the ptype of the application that manages
the object and message patterns that pertain to the object.
These message patterns also contain instructions on what the
ToolTalk service should do when a message is available but
the application isn’t running. ToolTalk can start the applica-
tion to deliver a message, queue the message, or discard it.

The otype file is compiled with tt_type_comp at appli-
cation installation time to make the information available to
the ToolTalk service. When an application that manages ob-
jects registers with the ToolTalk service, it declares its ptype.
When a ptype is registered, the ToolTalk service checks for
otypes that mention the ptype and registers the patterns
found in these otypes.

Object Files. When object-oriented messaging is used, the
ToolTalk definition of “file” is expanded to include the state-
ment “container storing ToolTalk objects.” Applications can
query for objects in a file and perform operations on batches
of objects.

The following ToolTalk service components work together to
provide interapplication communication and object informa-
tion management:

® ttsession
The ToolTalk communication process. One ttsession
runs on a machine and communicates with other tt-

1. You cannot create object in files that are in a read-only file system. The
ToolTalk service must be able to create a database in the same file system as
the object.

Application

TTEEY

Application

sessions when a message needs to be delivered to an
application in another session.

* rpc.ttdbserverd
The ToolTalk database server process. One rpc . ttdb-
serverd is installed on a disk partition that stores files
of interest to ToolTalk clients or files containing ToolTalk
objects.

* libtt
The ToolTalk application programming interface (API)
library. Applications include the APl library in their pro-
gram and call the ToolTalk functions found in the li-
brary.

The ToolTalk service uses SunSoft’'s ONC RPC to commu-
nicate between these ToolTalk components. It encodes mes-
sages according to the external data representation (XDR)
standard.

The process and object type information that an applica-
tion provides to the ToolTalk service is stored in the Classing
Engine, an OpenWindows™ desktop type database. File and
ToolTalk object information is stored in a NetiISAM™ data-
base managed by rpc.dbserverd.

The Classing Engine is automatically installed with Open-
Windows V3. RPC and NetISAM are provided by SunOS.

See Figure 1.1.3 for an illustration of the ToolTalk service
architecture.

Classing
Engine
F 3

file and
object
data

h 4
ONC remote procedure call (RPC))

Figure 1.1.3. ToolTalk service architecture.

10

Chapter 1. ToolTalk® Overview

1.1.5
Modifying Your
Application

1.1.6
What You Need
to Integrate

Instructions

Sample Programs

1.1.6 What You Need to Integrate

To use the ToolTalk service, an application calls ToolTalk
functions from the ToolTalk application programming inter-
face (API). The ToolTalk API provides functions for register-
ing with the ToolTalk service, creating message patterns,
sending messages, receiving messages, examining message
information, and so forth. The first step in actually modifying
your application is to include the ToolTalk API header file in
your program.

The detailed instructions for modifying your application
are found in Sections 2 through 6.

To integrate with the ToolTalk service, you must install the
OpenWindows V3 Programmer Set.

Note - OpenWindows V3 requires SunOS 4.1.x.

The instructions and software you’ll need to integrate
your application with the ToolTalk service are listed below.

The information you will need to design or modify your ap-
plication is found in this book. Step-by-step instructions
show you how to modify your application to use the ToolTalk
service.

For a tutorial on process-oriented messaging, see the
OpenWindows Version 3 Desktop Integration Guide. The tuto-
rial describes the concepts necessary for process-oriented
messaging and provides step-by-step instructions for modi-
fying your application to send and receive messages. In this
tutorial, message patterns are created and registered while
the application is running.

To illustrate the step-by-step instructions in this book, the fol-
lowing sample programs are used.

® ttsamplel
A simple Xview broadcast slider/thermometer dem-
onstration program. Start two or more copies to see
the effect of broadcast messages.

¢ Sun_EditDemo
An object-oriented Xview program that creates objects
out of lines of code. Includes an object control window
and simple editor. Objects are wrapped in text with C-
style comments.

11

Another sample program not used in this book but inter-
esting to look at is the t tmon program, a message monitoring
Xview program that watches all ToolTalk message traffic in
the local session.

These sample programs and a makefile are located in the fol-
lowing directory:

SOPENWINHOME/share/src/tooltalk/

ToolTalk Software The ToolTalk service is available with the OpenWindows V3
release and is automatically installed with the OpenWin-
dows system. Be sure to install the Programmer’s Subset.
Here are the ToolTalk service directories and files:

SOPENWINHOME /bin/

install_tt
ToolTalk installation script. Used by OpenWindows
V3 installation script.

rpc.ttdbserverd
ToolTalk database management program. Must be in-
stalled on all filesystems that contain files referred to
by applications in file scoped messages and files con-
taining ToolTalk objects.

ttdbck
Utility to check and repair ToolTalk databases.

ttcp

ttmv

ttrm

ttrmdir

tttar
Unix shell commands enhanced to inform the
ToolTalk service of the movement of files and objects.

ttsession
ToolTalk communication program that runs in each
session.

tt_type_comp
ToolTalk type compiler for ptype and otype files.
$SOPENWINHOME/1lib/
libtt.so.1l.1

libttstub.so.1.1
libtt.a

12 Chapter 1. ToolTalk® Overview

Publish Your Ptypes
and Otypes

1.1.6 What You Need to Integrate

SOPENWINHOME/include/desktop/
tt_c.h
ToolTalk API header file. Include this file in your pro-
gram.

$OPENWINHOME/1lib/locale/C/LC_MESSAGES/
Sun_ToolTalk.mo
ToolTalk catalog of error and event messages.

SOPENWINHOME /man/manl/
install_tt.1
tt_type_comp.1l
ttcp.1l
ttmv.1l
ttrm.1
ttrmdir.1
ttsession.1
tttar.1l

SOPENWINHOME/man/man3/
ttapi.3

SOPENWINHOME/man/man8g/
rpc.ttdbserverd. 8
ttdbck.8
ttdbserverd. 8
Man pages for ToolTalk binaries, type compiler, en-
hanced shell commands, API, and database check util-

ity.

Ptypes and otypes make it possible to send messages to types
of processes, types of objects, and specific objects. This infor-
mation is compiled at application installation time and
stored in the Classing Engine database.

To communicate with other vendor’s applications, you
must know their ptypes and possibly their otypes (depend-
ing on what method of messaging you choose). SunSoft helps
facilitate this by providing a Vendor Data Type Registration
program. As type information is gathered, it will be publicly
available through the SUCCESS™ database, SunSoft’s on-
line electronic support service for SunSoft’s software devel-
opers. See the OpenWindows Version 3 Desktop Integration
Guide for more information.

13

1.1.7
Setting Up the
ToolTalk Service

Installing the
ToolTulk Service

Starting a ToolTalk
Session

14

Install the OpenWindows V3 Programmer’s Subset.

t t sessionisthe ToolTalk message server. This background
process must be running before any messages can be sent or
received. Each message server defines a “session”.
ttsession is automatically started by the first “open”
call made by a ToolTalk client. Use the ttsession com-
mand to manually starta ttsession.
ttsession responds to two signals. If it receives the
USR1 signal, it toggles the trace mode on or off. If it receives
the USR2 signal, it rereads the types file.
ttsession [-A max_active_msgs] [-a level] [-d
display] [-s] [-t] [-v] [-{EIX}] [-h]
[-c command]

-A Specifies the maximum number of messages in-
progress before aTT_ERR_OVERFLOW condition is
returned. Default is 2000.

-a Set the server authentication level. The level must
be unix, xauthor des.

-d Directs t t session to start an X session for the giv-
en display. Normally, ttsession usesthe $DIS-
PLAY environment variable.

-s Silent — don’t print any warning messages.

-t Turn on trace mode. Tracing is very helpful for see-
ing how messages are dispatched and delivered.
The output is very voluminous. To toggle the trace
mode on or off use the USR1 signal.Iftracemodeis
turned on while t t session is running, messages
appear on the console.

Tracing displays the state of a message when it is first seen
by tt session. The lifetime of the message is then shown by
showing the result of matching the message against type sig-
natures (dispatch stage) and then showing the result of
matching the message against any registered message pat-
terns (delivery stage). Any attempt to send the message to a

Chapter 1. ToolTalk® Overview

X Window System
(Including X11/NeWS)

Background and Batch
Sessions

1.1.7 Setting Up the ToolTalk Service

given process is also shown together with the success of that
attempt.

-v Print the version number and exit.

-E Read in the types from the Classing Engine data-
base. This option is the default.

-X Read in the types from the alternate XDR format da-
tabase in SHOME/ . tt/types.xdrand /etc/tt/

types.xdr.
-h Print help on invoking t tsession and exit.
-C Starts a process tree session and runs the given com-

mand. The special environment variable _SUN_
TT_SESSION will be set to the nameof thissession.
Any process started with this variable in the envi-

ronment will default to being in this session. If com-
mand is omitted the value of $SHELL is used
instead. Everything after -c on the command line
is taken as the command to be executed, so -c

should be the last option.

If neither -c or -d is specified, an X session is started using
the server specified in the $DISPLAY environment variable.

Under the X Window System, a session is established by ex-
ecuting ttsession, either without arguments (taking the
display from the SDISPLAY environment variable) or speci-
fying the display with the -d switch.

ttsession
or
ttsession -d :0

When ttsession is invoked, it immediately forks and
the parent copy exits, so that the process managing the ses-
sion executes in the background. The session is registered as
a property, named by the atom _SUN_TT_SESSION on the
root of screen 0, giving the host and port number for commu-
nication with the process managing the session.

If your application runs as a background job, in a batch ses-
sion, or in a session bound to a character terminal, it should
do so as its own session. This can be done by using the -c
switch on ttsession:

ttsession -c command-to-run-in-batch

15

1.1.8

Managing

Be sure to use the -c option last. Everything after -c is
read as part of the command.

To keep specs up to date with the objects they describe, the
ToolTalk service stores this information on the same file sys-
tem as the object. This means that if the object moves, its spec

ToolTalk Object must move too.

and File

Caution - Despite the efforts of the ToolTalk service and

integrated applications, it’s possible for object references

to be broken by removing, moving, or renaming files with
shell commands like mv or rm. Broken references like this
will show up as undeliverable messages.

Tell users of your application to use the ToolTalk-wrapped
shell commands listed in Table 1.1.3 for copying, moving,
and removing files referred to in messages and files contain-
ing objects.

Table 1.1.3. ToolTalk-wrapped shell commands.

Command Description

ttcp Copies file to new location. Updates file and object location information in
ToolTalk database.

ttmv Moves directory and/or files to new location. Updates file and object location
information in ToolTalk database. Removes old version of file or directory.

ttrm Removes specified file. Removes file and object information from the ToolTalk
database.

ttrmdir Removes empty directories (directories that contain no files) that have ToolTalk
object specs associated with them. It’s possible to create an object spec for a
directory. When an object spec is created, the pathname of a file or directory is
supplied. Removes object information from the ToolTalk database.

tttar Archives or extracts multiple files and object information into (or from) a single

archive, called a tarfile. Can also be used to just archive or extract ToolTalk file
and object information into (or from) a tarfile.

16

Chapter 1. ToolTalk® Overview

1.1.9 These documents contain further information on the Tool-
Talk service:
For More

Information

Table 1.1.4. ToolTalk document roadmap.

Documents

Topics

Audience

OpenWindows Version 3 Installation
and StartUp Guide

How to install the ToolTalk
service

Advanced user, system
administrator

ToolTalk 1.0 Setup and Administration
Guide

How to setup the ToolTalk
service and manage its files

System administrator

OpenWindows Version 3 Desktop

Process-oriented messaging

Software developer

Procedural Protocol

messages: A “Quickstart”
guide

Integration Guide tutorial, How to register your
ptype and otype with
SunSoft
Designing and Writing A ToolTalk How to write ToolTalk Software developer,

advanced user

Tool Inter-Operability: A Hands On
Demonstration

Tool and applications inter-
operability examples

Software developer,
advanced user

1.1.9 For More Information

17

1.2
General
Application

18

To use the ToolTalk service, your application calls ToolTalk
functions from the ToolTalk API library. You begin modifying
your application to use the ToolTalk service by including the
ToolTalk API header file. After initializing and starting a ses-
sion with the ToolTalk service, you can provide additional
information to the ToolTalk service by joining files and user
sessions. When your process is ready to quit, you unregister
these patterns and close your ToolTalk session.

In addition to providing instructions on how to participate
in a ToolTalk session, this section tells you how to manage
storage of values passed in from the ToolTalk service and
how to handle errors that the ToolTalk service returns.

Modify your application to satisfy general application re-
quirements for the ToolTalk service by:

¢ Including the ToolTalk API Flle

¢ Registering With the ToolTalk Service

* Setting Up to Receive Messages

* Managing Storage

¢ Handling Errors

¢ Unregistering from the ToolTalk Service.

Note - The code samples that illustrate the calls used to per-
form the operations are mostly fragments from the sample
programs, ttsamplel and Sun_EditDemo. These sample
programs are in this directory:SOPENWINHOME/share/
src/tooltalk/

Chapter 1. ToolTalk® Overview

1.2.1
Including the
ToolTalk API File

1.2.2

Registering with
the ToolTalk
Service

1.2.1 Including the ToolTalk API File

The first step in modify your application to use the ToolTalk
service is to include the ToolTalk API header file in your pro-
gram. This file, tt_c.h, lives in this directory:

SOPENWINHOME/include/desktop/

Here's how ttsamplel includes this file.

/*

* ttsamplel -- dynamic pattern,
* procedural notification

*/

#include <stdio.h>
#include <sys/param.h>
#include <sys/types.h>
#include <xview/xview.h>
#include <xview/panel.h>
#include <strings.h>

#include <desktop/tt_c.h>

When you register with the ToolTalk service, you have the
choice of registering in the ToolTalk session the application
was started in (the initial session) or locating another session
and registering there.

The ToolTalk functions you need to register with the
ToolTalk service are shown in Table 1.2.1.

Table 1.2.1. Initializing and registering with the ToolTalk ser-
vice.

Return Type ToolTalk Function

char * tt_open(void)

int tt_fd(void)

char ~* tt_X_session(const char
*xdisplay)

Tt_status tt_default_session_set(const char *sessid)

19

Registering in the
Initial Session

20

To initialize and register your process with the initial
ToolTalk session, obtain a process identifier (procid) and a
matching file descriptor.

tt_open () returns the procid for your process, and sets
it as the default procid.

tt_£fd() returns a file descriptor for your current procid
that will become active when a message arrives for your
application. See “When a message has arrived for your ap-
plication, the file descriptor becomes active. Your code for
being alerted that the file descriptor is active will vary de-
pending on how your application is structured.” for in-
structions on being notified when the file descriptor is
active.

When tt_open () is the first call made to the ToolTalk
service, it sets the initial session as the default session. The
default session identifier (sessid) is important to the delivery
of ToolTalk messages. The ToolTalk service will automati-
cally fill in the default sessid if an application does not explic-
itly set the session message attribute. If the message is scoped
to TT_SESSION, the message will be delivered to all appli-
cations in the default session who have registered interest in
this type of message.

Here’s sample code to initialize and register with the
ToolTalk service.

int ttfd;

/*

* Initialize ToolTalk, using the initial

* default session, and obtain the file

* descriptor that will become active whenever
* ToolTalk has a message for this process.

*/

my_procid = tt_open();
ttfd = tt_£d();

Chapter 1. ToolTalk® Overview

Registering ina
Specified Session

1.2.3

Setting Up to
Receive Messages
XView Programs

To register in a session other than the initial session, your
program must find the name of the other session, set the new
session as the default, and register with the ToolTalk service.
The calls required must be in this order:

1. Get the name of the session, e.g. use tt_X_ses-
sion().This call retrieves the name of the session
associated with an X11 display server. tt_X_ses-
sion() takes the argument char *xdisplay_
name where the xdisplay_name is the name of an
X11 display server (e.g. somehost:0, : 0, etc.)

2. tt_default_session_set ();
3. tt_open();
4, tt_£d();

Here’s an example of how you would join an X session
called somehost : 0 which is not your initial session.

char *my_session;
char *my_procid;

my_session = tt_X_session(“somehost:0");
tt_default_session_set (my_session);
my_procid = tt_open();

ttfd = tt_£d¢();

When a message has arrived for your application, the file de-
scriptor becomes active. Your code for being alerted that the
file descriptor is active will vary depending on how your ap-
plication is structured.

A program that uses the XView notifier, through xv_-
main_loop () or notify_start (), can have a callback
function invoked when the file descriptor becomes active. In-
vokenotify_set_input_func () with the handle for the
message object as a parameter.

Here’s an example of an XView program setting up to receive
messages.

/*

*/

ttfd) ;

* Arrange for XView to call receive_tt_message when the ToolTalk file
* descriptor becomes active.

notify_set_input_func(base_frame,
(Notify_func)receive_tt_message,

1.2.3 Setting Up to Receive Messages

21

XWindow System Xt
(Intrinsics) Programs

TNT Programs

Other Xlib Programs

1.2.4
Managing Storage

Information You
Provide to the
ToolTalk Service

Information Provided
by the ToolTalk
Service

22

An Xt-based program uses Xt AddInput () to watch for ar-
riving messages.

An TNT-based program uses wire_AddFileHandler ()
to watch for arriving messages.

Programs structured around a select (2) orpoll (2) sys-
tem call use the file descriptor returned by tt_£d ().

After the select call exits with this file descriptor active,
use tt_message_receive () to obtain a handle for the in-
coming message.

The ToolTalk service simplifies your application storage
management by providing you a copy of the information it
returns to you and by copying all information your applica-
tion provides to the ToolTalk service.

When you provide a pointer to the ToolTalk service, it copies
the information referenced by the pointer. You can then dis-
pose of the information you provided; the ToolTalk service
won’t use the pointer again to retrieve the information.

The ToolTalk service provides an allocation stack in the
ToolTalk API library that it uses to store information persis-
tently that it gives to you. For example, if you asked for the
sessid of the default session with tt_default_ses-
sion (), the ToolTalk service returns the address of the char-
acter string in the allocation stack (a char * pointer) that
contains the sessid. When you have retrieved the sessid, dis-
pose of the character string to clean up the allocation stack.

Note - The APl allocation stack should not be confused with
your program’s run-time stack. The API stack will not dis-
card information until you tell it to.

The ToolTalk service provides the calls listed in Table 2.2
to manage the storage of information in the ToolTalk API al-
location stack:

Table 1.2.2. Using ToolTalk storage.

Return Type ToolTalk Function
int tt_mark(void)
void tt_release(int mark)

Chapter 1. ToolTalk® Overview

Return Type ToolTalk Function

void tt_free(caddr_t p)

caddr_t tt_malloc(size_t s)

The tt_mark() and tt_release () functions, used to
mark and free information returned by a series of functions,
are a general mechanism to help you easily manage storage.
The tt_mark() and tt_release() functions are typi-
cally used at the beginning and end of a routine where the
information returned by the ToolTalk service is no longer in-
teresting after the routine has ended.

To ask the ToolTalk service to mark the beginning of your
storage space, use t t_mark (). The ToolTalk service returns
amark, an integer that represents a location on the API stack.
All the information that the ToolTalk service subsequently
returns to you will be stored in locations that come after the
mark. When you no longer need the information, call
tt_release () and specify the mark that signifies the be-
ginning of the information you no longer need.

In the following example, ttsamplel calls tt_mark ()
at the beginning of the routine that examines the information
in a message. When the information examined in the routine
is no longer needed and the message has been destroyed,
tt_release () iscalled with the mark to free storage on the
stack.

/*

* Get a storage mark so we can easily free all the data
* ToolTalk returns to us.

*/

mark = tt_mark();

if (O==strcmp(“ttsamplel_value”, tt_message_op(msg_in))) {
tt_message_arg_ival (msg_in, 0, &val_in);
Xv_set (gauge, PANEL_VALUE, val_in, NULL);
}

tt_message_destroy (msg_in);
tt_release(mark) ;

return;

1.2.4 Managing Storage 23

Special Case: Callback and
Filter Routines

24

tt_malloc () reserves a specified amount of storage in
the allocation stack for your use. You could use tt_mal-
loc () within a filter routine used by the ToolTalk file query
function, tt_file_objects_guery (). This function re-
turns all the objects in a file and runs it through a filter routine
that you provide. Your filter routine may be looking for a spe-
cific object. Once your filter routine finds the object you were
looking for, use tt_malloc () to create a storage location
and copy the object into the location. When your filter func-
tion returns, the ToolTalk service will free all storage used by
the objects in the file, but the object you stored via tt_mal-
loc () will be available for further use. The way that the
ToolTalk service behaves toward information passed into fil-
ter functions (and callbacks) is a special case. In all other in-
stances, the ToolTalk service stores the information in the API
allocation stack until you free it. See “One of the features of
the ToolTalk service is callback support for messages, pat-
terns, and filters. Callbacks are routines in your program that
ToolTalk calls when a particular message arrives (message
callback) or when a message matches a particular pattern
you registered (pattern callback), When you call file query
functions such as tt_file_objects_ query(), you point to a filter
routine that the ToolTalk service calls as it returns items from
the query. You tell the ToolTalk service about these callbacks
by adding the callback to a message or pattern before sending
the message or registering the pattern. When you call tt_fi-
le_objects_ query(), you provide the filter routine as an argu-
ment.” for more information.To free storage set aside by
tt_malloc(),usett_free().

To free storage of individual objects that the ToolTalk ser-
vice provides you pointers to, use t t_free (). For example,
if you asked for the sessid of the default session with t t_de-
fault_session(), you could free up the space in the API
allocation stack that stores the sessid with tt_free () after
you have examined the sessid. tt_free () takes an address
in the allocation stack (a char * pointer or an address re-
turned from tt_malloc ()) as an argument.

One of the features of the ToolTalk service is callback support
for messages, patterns, and filters. Callbacks are routines in
your program that ToolTalk calls when a particular message
arrives (message callback) or when a message matches a par-
ticular pattern you registered (pattern callback), When you
call file query functions such as tt_file_objects_

Chapter 1. ToolTalk® Overview

1.2.5
Handling Errors

1.0

query (), you point to a filter routine that the ToolTalk ser-
vice calls as it returns items from the query. You tell the
ToolTalk service about these callbacks by adding the callback
to a message or pattern before sending the message or regis-
tering the pattern. When you call tt_file_objects_
query (), you provide the filter routine as an argument.

Callback and filter routines called by the ToolTalk service
are called with two kinds of arguments:

¢ context arguments
The arguments you passed in to the API call that trig-
gered the callback. These arguments point to items
your application owns.

* pointers to API objects
The address of message or pattern attributes in stor-
age.

The context arguments are passed through from the
ToolTalk service to your application. The API objects refer-
enced by pointers are freed by the ToolTalk service as soon as
your callback or filter function returns. If you want to keep
any of these objects, be sure to copy the objects before your
function returns.

Rather than have ToolTalk functions return error status in a
global variable, the ToolTalk service returns error status in
the function’s return value. For example, the return value for
tt_default_session_set() is a Tt_status code. If
the ToolTalk service sets the default session to the sessid you
specified without a problem, the Tt _status code is TT_OK.
If a problem was encountered, the ToolTalk service would
return another Tt _status code, TT_ERR_SESSION, to let
you know the sessid you passed was not valid.

If a ToolTalk function has a natural return value such as a
pointer or an integet, a special error value is returned instead
of the real value. For example, the return value for
tt_open () is a pointer to a procid. If the ToolTalk service
could not respond to your application’s tt_open () call, it
returns a pointer to a Tt_status code instead of a valid
procid. With the ToolTalk error handling functions, you
check the pointer to see if it’s pointing to a valid procid or a
Tt_status code. If the pointer is to a valid procid, the
checking function returns TT_OK.

25

Use the ToolTalk functions listed in Table 1.2.3 and the
ToolTalk macros listed in Table 1.2.4 to check for and retrieve
error values

Checkin Q Returned ToolTalk functions with no natural return value just return
Tt status an element of the Tt _status enum. Use the ToolTalk macro
— tt_is_err (), which returns an integer, to see if there was
a warning or an error. If you receive 1, the Tt_status enum
is an error. If you receive 0, the Tt_status enum is a warning.
If there is an error, you can obtain the character string ex-
plaining the Tt_status code with tt_status_mes-
sage () as shown in the following example.

Table 1.2.3. Retrieving ToolTalk error status.

Return Type ToolTalk Function
char * tt_status_message (Tt_status ttrc)
Tt_status tt_int_error(int return_val)

Table 1.2.4. ToolTalk error macros.

Return Type ToolTalk Macro Expands to
Tt_status tt_ptr_error(pointer tt_pointer_error((void
) *) (p))

Tt_status tt_is_err(pointer) (TT_WRN_LAST < (p))

char *spec_id, my_application_name;
Tt_status tterr;

tterr = tt_spec_write(spec_id);

if (tt_is_error(tterr)) {

fprintf (stderr, “%s: %s\n”, my_application_name,
tt_status_message(tterr));

}

Checkin 9 Returned When an error occurs during a ToolTalk function that returns
Pointers a pointer, the ToolTalk service provide an address within the

ToolTalk API library containing the appropriate Tt_status
code. Use the ToolTalk macro tt_ptr_error () to find out
if the pointer is valid. If the pointer is an error value, use
tt_status_message() to get the Tt_status code

26 Chapter 1. ToolTalk® Overview

string. The following sample code checks a pointer to see if
it's an error value. If it is, the character string describing the
Tt_status code is retrieved and printed.

char *o0ld_spec_id, new_file, new_specid, my_application_name;
Tt_status tterr;

new_spec_id = tt_spec_move(old_spec_id, new_file);
tterr = tt_ptr_error(new_spec_id);
switch (tterr) {
case TT_OK:
/*
* Replace o0ld_spec_id with new_spec_id in my internal
* data structures.
*/
update_my_spec_ids (old_spec_id, new_spec_id);
break;
case TT_WRN_SAME_OBJID:
/*
* The spec must have stayed in the same filesystem,
* gince ToolTalk is reusing the spec id. Do nothing.
*/
break;
case TT_ERR_FILE:
case TT_ERR_ACCESS:
default:
fprintf (stderr, “%s: %s\n”, my_application_name,
tt_status_message(tterr));
break;

}

Checking Returned ToolTalk functions that return integers return wildly out-of-
bounds values for errors. tt_int_error () will return

In teg ers TT_OK if the value is not wildly out of bounds. If a value is
outofbounds, use tt_is_error () to determine if an error
or a warning occurred. To retrieve the catalog string for a
Tt_status code, use tt_status_message (). Here's
sample code that checks a returned integer .

1.2.5 Handling Errors 27

Tt_message msg;

int num_args;

Tt_status tterr;

char *my_application_name;

num_args = tt_message_args_count (msg) ;

tterr = tt_int_error (num_args);

if (tt_is_error(tterr)) {

fprintf(stderr, “%s: %$s\n”, my_application_name,
tt_status_message(tterr));

}

Error PT‘OPIZ gation Any ToolTalk functions that accept pointers always check the
pointer passed in and return TT_ERR_POINTER if the
pointer is an error value. This allows you to combine calls in
reasonable ways without having to check after every sin-
gle call.

In the following example, a message is created, filled in,
and sent. If tt _message_create () fails, an error object is
assigned to m, and all the tt_message_xxx_set () and
tt_message_send () calls fail. Check the return code from
tt_message_send () to detect the error without having to
check between each call.

Tt_message m;

m=tt_message_create();
tt_message_op_set (m, "OP") ;
tt_message_address_set (m, TT_PROCEDURE) ;
tt_message_scope_set (m, TT_SESSION) ;
tt_message_class_set (m, TT_NOTICE) ;
tt_rc=tt_message_send(m) ;

if (tt_rc!=TT_OK)...

1.2.6 Use tt_close () when you want to stop interacting with
U isteri the ToolTalk service and other ToolTalk session participants.
nregisiering tt_close() returns Tt_status and closes the current de-

from the ToolTalk faultprocid
Service I

* Before leaving, allow ToolTalk to clean up.
*/
tt_close();

exit (0);
}

28 Chapter 1. ToolTalk® Overview

1.3
Message
Patterns

1.3 Message Patterns

This section describes how to provide message pattern infor-
mation to the ToolTalk service. The ToolTalk service uses
message patterns to determine message recipients. After re-
ceiving a message, the ToolTalk service compares the mes-
sage to all current message patterns to find a matching
pattern. Once a match is made, the message is delivered to
the application listed in the message pattern. See Section 3.1
for a description of the information you can put into a mes-
sage pattern.

You can provide message pattern information to the
ToolTalk service using static and/or dynamic methods. To
use the static method, define your ptype and otypes (if you
create ToolTalk objects) and compile them with the ToolTalk
type compiler, tt_type_comp. tt_type_comp stores
your type information in the Classing Engine, a OpenWin-
dows desktop type database. When you declare your ptype,
the ToolTalk service creates message patterns based on your
type information. These static message patterns will remain
in effect until you close communication with the ToolTalk
service.

To inform other applications of your ptype and otypes, use
SunSoft’s Vendor Data Type Registration program. See the
OpenWindows Version 3 Desktop Integration Guide for more in-
formation.

To provide message pattern information while your appli-
cation is running (dynamic method), create a message pat-
tern and register it with the ToolTalk service. You can add
callback routines to dynamic message patterns that the
ToolTalk service will call when it matches a message to this
pattern. You can register and unregister dynamic message
patterns as needed.

29

1.3.1
Message Pattern
Attributes

30

You choose the static and /or dynamic method depending
on the type of messages you want to receive. If you want to
receive a defined set of messages, the static method provides
an easy way to specify the message pattern information.
Since type information is only specified once (when your ap-
plication is installed), your application just needs to declare
its ptype each time it starts.

Use the static method of providing message pattern infor-
mation by:

* Defining Your Process Type

* Defining Your Object Types (if creating objects)
¢ Installing Your Type Information

* Declaring Your Process Type

If the types of messages you want to receive will vary
while your application is running, the dynamic method pro-
vides the means to add, change, or remove message pattern
information after your application is started.

Use the dynamic method of providing message pattern in-
formation by:

¢ Creating Message Patterns

* Filling Message Patterns

* Attaching Pattern Callbacks
* Registering Message Patterns
* Deleting Message Patterns

Regardless of the method you choose to provide message
patterns to the ToolTalk service, you will want to update
these patterns with your current session and file information
so that you receive all messages that refer to the session or
file in which you are interested. “Updating Message Patterns
With THe Current Session Or File,” Section 3.4, describes
how to join sessions and files to update your message pat-
terns.

The attributes in your message pattern specify the type of
messages you want to receive and, to some extant, the num-
ber of messages you receive. Here’s how the ToolTalk service
behaves when comparing message attributes to pattern at-
tributes.

Chapter 1. ToolTalk® Overview

* If no pattern attribute is specified, the ToolTalk service
counts the message attribute as matched. The fewer pat-
tern attributes you specify, the more messages you be-
come eligible to receive.

* If there are multiple values specified for a pattern at-
tribute, one of the values must match the message at-
tribute value. If no value matches, the ToolTalk service
will not consider your application as a receiver.

In all of your message patterns, you must specify these
attributes at the minimum:

® scope
¢ category

See Table 1.3.1 for a complete list of attributes you can put
in your message patterns.

Table 1.3.1. ToolTalk message pattern attributes.

Pattern Attribute Value Description

category TT_OBSERVE, TT_HANDLE, Do you want to perform the
operation listed in a message or
just view a message?

scope TT_SESSION, TT_FILE, Are you interested in messages
TT_BOTH, about a session and/or a file? (Join
TT_FILE_IN_SESSION a session and/ or file after the

message pattern is registered to
update the sessid and filename.)

arguments arguments or results What arguments are used for the
operation in which you are
interested?

class TT_NOTICE, TT_REQUEST Do you want to receive notices
and/or requests?

file char *pathname What file should be mentioned in a
message?

object char *objid What object should be mentioned

in a message?

operation char *opname What operation should be
mentioned in a message?

otype char *otype What type of object interests you?

1.3.1 Message Pattern Attributes 31

Pattern Attribute Value Description

address TT_PROCEDURE, TT_OBJECT, What type of address should a
TT_HANDLER, TT_OTYPE message contain?

disposition TT_DISCARD, TT_QUEUE, What should the ToolTalk service
TT_START do when it can’t deliver a message

to your application?
sender char *procid What sender interests you?
sender_ptype char *ptype What type of sending process

interest you?

session char *sessid What session should be mentioned
in a message?
state TT_CREATED, TT_SENT, In what state should the message
TT_HANDLED, TT_FAILED, be?

TT_QUEUED, TT_STARTED,
TT_REJECTED

1.3.2
Static Message
Patterns

Defining Your
Process Type

32

Note - The code samples that illustrate the calls used to per-
form the operations are mostly fragments from the sample
program, Sun_EditDemo. This sample program can be
found in this directory:
SOPENWINHOME/share/src/tooltalk/

The process type (ptype) provides application information
that the ToolTalk service can use when the application isn’t
running. This information is used to start your process if nec-
essary to receive a message, queue messages until it starts, or
deliver ptype scoped messages to your process.

A ptype begins with an identifier known as a ptid. The
optional start string following the ptid is a command that the
ToolTalk service will execute to start a process running the
program.

Following the start string are signatures describing the
procedure and process messages that the program wishes to
receive. Messages to be observed are described separately
from those to be handled. A signature is divided into two

Chapter 1. ToolTalk® Overview

Syntax

1.3.2 Static Message Patterns

parts by an arrow (=>). The first part specifies matching at-
tribute values. The more attribute values specified in a signa-
ture, the fewer messages the signature will match.

The second part of a signature (after the arrow) specifies
receiver values that the ToolTalk service will copy into mes-
sages that match the first part of the signature. A ptype sig-
nature can contain values for disposition and opnum. The
ToolTalk service uses the disposition value (start, queue, or
the default discard) to determine what to do with a message
that matches the signature when no process is running the
program. The opnum value is provided as a convenience to
message receivers. When two signatures have the same op-
eration name but different arguments, giving them different
opnums makes incoming messages easy to identify.

Here's the syntax for a ptype:

ptype ::= 'ptype’ ptid ‘{’
property*
[“observe: psignatureﬁ
[“handle: "’ psignature*]
ol
property ::=property_id value ‘;’
property_id ::= ‘per_file’
| ‘per_session’
| ‘start’
value ::=string
| number
ptid ::=identifier
psignature = [scope] op args
["=>"'
['start’] [‘'queue’]
[“opnum="'number]]
scope := ‘file’
| ‘session’
| 'file_in_session’
args ::=' (' argspec {, argspec}*)
| ‘(void) '
| O
argspec ::=mode type name
mode ::=‘in’ | ‘out’ | ‘inout’
type ::=identifier
name := identifier

33

Semantics

34

Property_id Information

ptid

process type identifier (ptid). A ptid must be unique for
every installation. This identifier cannot be changed
after installation time, so it is important that a unique
name be chosen. Use a name that includes the trade-
marked name of your product or company, such as
Sun_EditDemo. Also use a few upper-case letters to
help make your ptid unique. The ptid cannot exceed
32 characters, and should not be one of the reserved
identifiers ptype, otype,per_file,per_session,
start, opnum, queue, file, session, observe, or
handle.

per_file

The maximum number of processes of this type that
can concurrently observe a particular file. If this many
processes of this type are already observing a docu-
ment, the ToolTalk service will not start another pro-
cess of this type.

Tools that cannot handle multiple processes updating the
same file should set this limit to 1.

per_session

The maximum number of processes of this type that
can concurrently run in a single session. If this many
processes of this type are already running in a session,
the ToolTalk service will not start another process of
this type.

Tools that manage multiple documents in one process
should set this limit to 1 so that all documents will be handled
by a single process in each user session.

start

Start string for the process. If the ToolTalk service
needs to start a process, it executes this command; /
bin/shis used as the shell. Before executing the com-
mand, the ToolTalk service defines TT_FILE as an en-
vironment variable with the value of the file attribute
of the message that caused the application to be start-
ed. The started command runs in the environment of
ttsession, not in the environment of the sender of
the message that caused the start, so any context infor-
mation must be carried by message arguments.

Chapter 1. ToolTalk® Overview

Psignature Matching Information

op
Operation name. This is matched against the op at-
tribute in messages.

args
Arguments for the operation. If the args list is
(void), the signature matches only messages with
no arguments. If the args list is empty (just “()”), the
signature matches without regard to the arguments.

scope
This pattern attribute is matched against the scope at-
tribute in messages.

Psignature Actions Information

start
If the psignature matches a message, and no running
process of this ptype has a pattern that matches the
message, start a process of this ptype.

queue
If the psignature matches a message, and no running
process of this ptype has a pattern that matches the
message, queue the message until a process of this
ptype registers a pattern that matches it.

opnum
Fill in the message’s opnum attribute with the speci-
fied number. The opnum allows you to specify an op-
eration more than once and list unique arguments
with each instance of the operation.

Here’s the ptype from the Sun_EditDemo program::

#include "Sun_EditDemo_opnums.h"

ptype Sun_EditDemo {
/* setenv SUN_EDITDEMO_HOME to install dir for the demo */
start “${SUN_EDITDEMO_HOME}/edit”;
handle:
/* edit file named in message, start editor if necessary */
session Sun_EditDemo_edit (void)
=> gtart opnum=SUN_EDITDEMO_EDIT;

/* tell editor viewing file in message to save file */
session Sun_EditDemo_save{void)

=> opnum=SUN_EDITDEMO_SAVE;

1.3.2 Static Message Patterns 35

/* save file named in message to new filename */
session Sun_EditDemo_save_as{in string new_filename)

/* bring down editor viewing file in message */
session Sun_EditDemo_close(void)

=> opnum=SUN_EDITDEMO_SAVE_AS;

=> opnum=SUN_EDITDEMO_CLOSE;

Defining Your Object
Types

Syntax

36

The Sun_EditDemo_opnums.h file defines symbolic
definitions for all the opnums used by edit . c. This allows
boththe edit . types fileand edit . c file to share the same
definitions.

The otypes for your application provide addressing informa-
tion that the ToolTalk service uses when delivering object-
oriented messages.

The number of otypes you have, and what they represent,
depends on the nature of your application. A word process-
ing application might have otypes for characters, words,
paragraphs, and documents. A diagram editing application
might have otypes for nodes, arcs, annotation boxes, and di-
agrams.

An otype is very similar to a ptype, consisting of a type
identifier and a list of signatures. The signatures define the
messages that can be addressed to objects of the type (that s,
the operations that can be invoked on objects of the type).

Each signature is divided into two parts separated by an
arrow (=>). The values preceding the arrow define matching
criteria for incoming messages. The values listed after the ar-
row are receiver values which the ToolTalk service adds to
each message that matches the first part of the signature. An
otype writer uses these values to specify the ptid of the pro-
gram that implements the operation, as well as the message’s
scope and disposition.

Here’s the syntax for an otype:

otype ::=obj_header’{’ objbody” '}’
s

obj_header ::='otype’ otid [’:’ otid']
objbody = 'observe:’ osignature”

| ‘handle:’ osignature”

Chapter 1. Tool Talk® Overview

Semantics

1.3.2 Static Message Patterns

osignature ::=o0p args [rhs][inherit] ‘;’
rhs ::=['=>' ptid [scopel]
[‘start’][‘queue’]
[“opnum="number]

inherit = 'from’ otid

args ='(’' argspec {, argspec}*)
| ‘(void) '
l O

argspec ::=mode type name

mode ='in’ | ‘out’ | ‘inout’

type =identifier

name =identifier

otid ::=1dentifier

ptid ::=1identifier

Obj_Header Information

otid

Identifies the object type. An object type identifier (otid)
must be unique for every installation. This identifier
cannot be changed after installation time, so it is im-
portant that a unique name be chosen. It is recom-
mended that the name begin with the ptid of the tool
that implements the otype. The otid is limited to 64
characters, and should not be one of the reserved iden-
tifiers ptype, otype, per_file, per_session,
start, opnum, start, queue, file, session,
observe, or handle.

Osignature Information. The object body portion of the
otype definition is a list of osignatures for messages about the
object that your application wants to observe and handle.
The osignatures contain many of the same fields as a psigna-
ture found in a ptype.

op
Operation name. This is matched against the op at-
tribute in messages.

args
Arguments for the operation. If the args list is
(void), the signature matches only messages with
no arguments. If the args list is empty (just “()”), the
signature matches without regard to the arguments.
ptid
Process type identifier for the application that manag-
es.this type of object.

37

opnum
Fill in the message’s opnum attribute with the speci-
fied number. The opnum allows you to specify an op-
eration more than once and list unique arguments
with each instance of the operation.

inherit
otypes form an inheritance hierarchy where opera-
tions can be inherited from base types. The ToolTalk
service requires the otype definer to name explicitly
all inherited operations and the otype to inherit from.
This prevents later changes (like adding a new level to
the hierarchy, or adding new operations to base types)
from unexpectedly affecting the behavior of an otype.

The other elements of the otype definition (scope, queue,
and start) have the same meaning as in ptype definitions, ex-
cept that scope and message class appear on the right hand
side of the arrow and are filled in by the ToolTalk service dur-
ing message dispatch. This allows the definer of the otype to
specify the attributes instead of requiring the message sender
to know how the message should be delivered.

Here's the otype definition from the Sun_EditDemo ed-
it.types file:

handle:

#include "Sun_EditDemo_opnums.h"
otype Sun_EditDemo_object {

/* hilite object given by objid, starts an editor if necessary */
hilite_obj(in string objid)
=> Sun_EditDemo session start opnum=SUN_EDITDEMO_HILITE_OBJ;

Installing Your Type
Information

38

The Sun_EditDemo_opnums.h file defines symbolic
definitions for all the opnums used by edit . c. This allows
boththe edit.types fileand edit . c file to share the same
definitions.

In order for applications to be started and to have messages
queued, the ptype definition must be put into the Classing
Engine. To receive messages addressed to objects your appli-
cation creates and manages, the otype definitions must also
be installed in the Classing Engine. The Classing Engine
makes ptype and otype information available on the host ex-
ecuting the sending process, the host executing the receiving
process, and the hosts running the sessions to which the pro-
cesses are joined.

Chapter 1. ToolTalk® Overview

Declaring Your
Process Type

1.3.2 Static Message Patterns

To get your type information into the Classing Engine and
available to the ToolTalk service, run the ToolTalk type com-
piler on your type file(s). This compiler creates Classing En-
gine definitions for your type information and stores them in
the Classing Engine database.

Here are the steps:

1. Run tt_type_comp on your ptype file.

Q

% tt_type_comp <your-file>

tt_type_comp runs your-file through cpp, compiles the
type definitions, and merges the information into the Class-
ing Engine tables. By default, tt_type_comp will use the
user’s Classing Engine tables. To specify otherwise, use the
-d option

Q

% tt_type_comp -duser|system|network
and specify one of the following:

user uses ~/.cetables/cetables

system uses /etc/cetables/cetables

network uses SOPENWINHOME/1lib/ce-
tables/cetables

For more information on tt_type_comp, see tt_-
type_comp(1l).

After running tt_type_comp, tell the ToolTalk service to
read the type information in the Classing Engine database.
This will make your type information available to the
ToolTalk service. To do this, follow these steps:

2. Find out the process identifier of the ttsession
process.
% ps -aux | grep ttsession

3. Send ttsession a SIGUSR2 signal.
$ kill -USR2 <ttsession pid>

To register your ptype with the ToolTalk service, use tt_p-
type_declare () during your application’s ToolTalk ini-
tialization routine. The ToolTalk service will read the type
information and create the message patterns listed in your
ptype and any of your otypes that reference the specified
ptype.

39

Note — The message patterns created by declaring your
ptype cannot be unregistered with tt_pattern_unreg-
ister().

Here, Sun_EditDemo registers its ptype during its ed-
it.c program initialization..

/*

*/
int

{

* Initialize our ToolTalk environment.

edit_init_tt()

int mark;

char *procid = tt_open();

int ttfd;

void edit_receive_tt_message();

mark = tt_mark();

if (tt_pointer_error(procid) != TT_OK) {
return 0;
if (tt_ptype_declare(“Sun_EditDemo”) != TT_OK) {
fprintf (stderr, “Sun_EditDemo is not an installed ptype.\n”);
return 0;

}

ttfd = tt_£4();

notify_set_input_func(edit_ui_base_window,
(Notify_func)edit_receive_tt_message,

ttfd) ;
}
tt_session_join(tt_default_session());
/ *
* Note that without tt_mark() and tt_release(), the above
* combination would leak storage -- tt_default_session() returns
* a copy owned by the application, but since we don’t assign the
* pointer to a variable we cannot not free it explicitly.
*/
tt_release(mark) ;
return 1;
}
40 Chapter 1. ToolTalk® Overview

1.3.3

To create and register a pattern, allocate a new pattern object,
fill in the proper information, and register it. When you are

D ynamic Mes SAZE done with the pattern (when you are no longer interested in

Patterns

messages that match it), either unregister or destroy the pat-
tern.

Note - The code samples that illustrate the calls used to per-
form the operations are mostly fragments from the sample
program, t t samplel. This sample program lives in this di-
rectory:

SOPENWINHOME/share/src/tooltalk/

The ToolTalk functions used to create, register, and unreg-
ister dynamic message patterns are listed in Table 1.3.2

Table 1.3.2. Creating, updating, and deleting message patterns.

Return Type ToolTalk Function

Tt_pattern tt_pattern_create(void)

Tt_status tt_pattern_arg_add(Tt_pattern p, Tt_mode n, const char *vtype, const char
*value)

Tt_status tt_pattern_barg_add(Tt_pattern m, Tt_mode n, const char *vtype, const
unsigned char *value, int len)

Tt_status tt_pattern_iarg_add(Tt_pattern m, Tt_mode n, const char *vtype, int value)

Tt_status tt_pattern_address_add(Tt_pattern p, Tt_address d)

Tt_status tt_pattern_callback_add(Tt_pattern m, Tt_message_callback f)

Tt_status tt_pattern_category_set(Tt_pattern p, Tt_category c)

Tt_status tt_pattern_class_add(Tt_pattern p, Tt_class c)

Tt_status tt_pattern_disposition_add(Tt_pattern p, Tt_disposition r)

Tt_status tt_pattern_file_add(Tt_pattern p, const char *file)

Tt_status tt_pattern_object_add(Tt_pattern p, const char *objid)

Tt_status tt_pattern_op_add(Tt_pattern p, const char *opname)

Tt_status tt_pattern_opnum_add(Tt_pattern p, int opnum)

Tt_status tt_pattern_otype_add(Tt_pattern p, const char *otype)

1.3.3 Dynamic Message Patterns 41

Return Type

ToolTalk Function

Tt_status tt_pattern_scope_add(Tt_pattern p, Tt_scope s)

Tt_status tt_pattern_sender_add(Tt_pattern p, const char *procid)

Tt_status tt_pattern_sender_ptype_add(Tt_pattern p, const char *ptid)

Tt_status tt_pattern_session_add(Tt_pattern p, const char *sessid)

Tt_status tt_pattern_state_add(Tt_pattern p, Tt_state s)

Tt_status tt_pattern_user_set(Tt_pattern p, int key, void *v)

Tt_status tt_pattern_register(Tt_pattern p)

Tt_status tt_pattern_unregister(Tt_pattern p)

Tt_status tt_pattern_destroy(Tt_pattern p)

Creating a Message
Pattern

42

To get a “handle” or “opaque pointer” to a new pattern ob-
ject, use tt_pattern_create (). Use this handle on suc-
ceeding calls to reference the pattern.

To fill in pattern information, use the tt_pattern_<at-
tribute>_add () and tt_pattern_<attribute> set ()
calls. See Table 1.3.1 for a complete list of pattern attributes.

Note - You can supply multiple values for each attribute
you add to a pattern (some attributes are set and only have
one value). The pattern attribute matches a message at-
tribute if any of the values in the pattern match the value in
the message. If no value is specified for an attribute, the
ToolTalk service assumes that you want any value to match.

The following pattern attributes must always be supplied:

¢ Category
Use TT_OBSERVE if you just want to look at messages.
Use TT_HANDLE if you want to handle the message.

* Scope
Use TT_SESSION to receive messages from other pro-
cesses in your session. Use TT_FILE to receive mes-
sages about the file you've joined. Use
TT_FILE_IN_SESSION to receive messages for the
file you've joined while in this session.

Chapter 1. ToolTalk® Overview

Adding a Message
Pattern Callback

Note — Note: Messages that have a TT_BOTH scope will
match your pattern if it has either TT_FILE or TT_SESSION.

You can add callbacks to message patterns so when the
ToolTalk service matches a message, it automatically calls
your callback routine to examine the message and take ap-
propriate actions. Use tt_pattern_callback_add() to
add a callback routine to your pattern.

When a message that matches a pattern with a callback is
delivered to you, it is processed via the callback routine and
when the routine is finished, it should return TT_CALL-
BACK_PROCESSED. Be sure to destroy the message when
you return TT_CALLBACK_PROCESSED to free the storage
used by the message. Use tt_message_destroy () to de-
stroy the message.

Here’s a code fragment to illustrate this requirement:

Tt_callback action
sanmple_msg_callback (Tt_message m, Tt_pattern p)
{

. process the msg ...

tt_message_destroy (m) ;
return TT_CALLBACK_PROCESSED;
}

Registerin Qa When the pattern)is cocrlnple’ce},1 register it \Ag’{h tt_pat-
tern_register (), and join the sessions or files you spec-
Message Pattern fiod.
Here’s how ttsamplel creates and registers a pattern:
/ *

*/

* Create and register a pattern so ToolTalk knows we are interested
* in “ttsamplel_value” messages within the session we join.

pat = tt_pattern_create();
tt_pattern_category_set (pat, TT_OBSERVE) ;
tt_pattern_scope_add(pat, TT_SESSION) ;
tt_pattern_op_add(pat, “ttsamplel_value”);
tt_pattern_register (pat);

Deleting Message
Patterns

1.3.3 Dynamic Message Patterns

To stop receiving messages that match a message pattern, use
tt_pattern_unregister() to unregister the pattern or
tt_pattern_destroy () to unregister and then destroy
the pattern object.

43

1.3.4

Updating
Message Patterns
with the Current
Session or File

Join the Default
Session

Table 1.3.3. Joining sessions.

Note - If delivered messages that matched the pattern just
removed have not been retrieved by your application (for
example, the messages might be queued), the ToolTalk ser-
vice does not destroy these messages.

The ToolTalk service will automatically unregister and de-
stroy all message pattern objects when tt_close() is
called.

To update your message patterns with the session and / or file
you are currently interested in, join the session and/or file.

If you have declared a ptype or registered a message pattern
that specifies TT_SESSIONor TT_FILE_IN_SESSION,you
will want to join the default session using tt_session_-
join() so the ToolTalk service can update your message
pattern with the default sessid. When your patterns are up-
dated, you will begin to receive messages scoped to the ses-
sion you joined.

Note - If you had previously joined a session and then reg-
istered a ptype or a new message pattern, you must join the
same session or a new session before you will receive mes-
sages that match your new patterns.

Use the ToolTalk functions listed in Table 1.3.3 to join the
session in which you are interested.

Return Type ToolTalk Function
char * tt_default_session(void)
Tt_status tt_default_session_set(const char *sessid)
char * tt_initial_session(void)
4 Chapter 1. ToolTalk® Overview

Return Type ToolTalk Function
Tt_status tt_session_join(const char *sessid)
Tt_status tt_session_quit(const char *sessid)
Here’s how ttsamplel joins the default session.
/ *
* Join the default session
*/
tt_session_join(tt_default_session());

When you no longer want to receive messages that refer
to the default session, inform the ToolTalk service with tt_ -
session_quit (). The sessid will be removed from your
session-scoped message patterns.

]oin Files Of Interest lf youhave declared a ptype or registered a message pattern

Table 1.3.4. Joining files.

that specifies TT_FILE or TT_FILE_IN_SESSION, you will
want to join files you are interested in by calling tt_file_-
join().Joining a file automatically adds the name of the file
to all of your file-scoped message patterns. Use the ToolTalk
functions listed in Table 1.3.4 to express your interest in spe-
cific files.

When you are no longer interested in receiving messages
that refer to the file, call tt_file_quit (). The file name
will be removed from your file-scoped message patterns.

Return Type ToolTalk Function
char * tt_default_file(void)
Tt_status tt_default_file_set(const char *docid)
Tt_status tt_file_join(const char *filepath)
Tt_status tt_file_quit(const char *filepath)
1.3.4 Updating Message Patterns with the Current Session or File 45

1.4
Sending
Messages

14.1
ToolTalk
Messages

Message Attributes

Addressing

46

This section provides the ToolTalk message attributes, ex-
plains how messages are routed, and describes how to create
messages, fill in message contents, attach callbacks to re-
quests, and send messages.

To send ToolTalk messages, modify your application to
support these operations:

* Creating and Filling In Messages
* Attaching Message Callback to Requests
* Sending Messages

ToolTalk messages contain attributes that store message in-
formation and provide delivery information to the ToolTalk
service. ToolTalk uses this delivery information to route the
messages to the appropriate receivers.

ToolTalk messages are simple structures containing at-
tributes for address, subject (operation and arguments), and
delivery information (class and scope.) Each message contains
attributes from Table 1.4.1.

Messages addressed to other applications can be addressed
to a particular process (process address) or any process that
has registered a pattern that matches your message (proce-
dure address). When addressing a message to a process, you
need to know the process identifier (procid) of the other ap-
plication. Applications receive a procid when they open com-
munication with ToolTalk. The procid is unique within the
user’s session in which the application was started.

Chapter 1. ToolTalk® Overview

Table 1.4.1. ToolTalk message attributes.

Message Who Can
. Value Description .
Attribute P Fill In
arguments arguments or results Arguments used in the sender, replier
operation. If the message is a
reply, this field contains the
results of the operation.
class TT_NOTICE, Specifies whether the recipient sender
TT_REQUEST needs to perform an operation.
file char *pathname The file involved in the sender,
operation. ToolTalk
object char *objid The object involved in this sender,
operation. ToolTalk
operation char *opname Name of operation to be sender
performed.
otype char *otype The type of object involved in sender,
this operation. ToolTalk
address TT_PROCEDURE, Where the message should be sender
TT_OBJECT, sent.
TT_HANDLER,
TT_OTYPE
handler char *procid The receiving process. sender,
ToolTalk
handler_ptype | char *ptype The type of receiving process. sender,
ToolTalk
disposition TT_DISCARD, Specifies what to do if the sender,
TT_QUEUE, TT_START | message can’t be received by ToolTalk
any running process.
scope TT_SESSION, Who will be considered as sender,
TT_FILE, TT_BOTH, possible recipients based on ToolTalk
TT_FILE_IN_SESSIO their registered interest in a
N session and/or a file.
sender_ptype | char *ptype The type of the sending process. | sender,
ToolTalk
session char *sessid The sending process’s session. sender,
ToolTalk

1.4.1 ToolTalk Messages

47

Message
Attribute

Value Description

Who Can
Fill In

status

int status,
char *status_str

Additional information about replier,
the state of the message. ToolTalk

Notices and Requests

Scope

48

However, it is unusual for one process to know another’s
procid; more often a sender doesn’t care which process per-
forms an operation (request message) or learns of an event
(notice message).

Applications can send two classes of ToolTalk messages, no-
tices and requests. A notice is informational, a way for an ap-
plication to announce an event. Applications that receive a
notice absorb the message without returning results to the
sender. A request is a call for an action, with the results of the
action recorded in the message, and the message returned to
the sender as a reply.

Applications using the ToolTalk service to communicate
usually have something in common - the applications are
running in the same session or they’re interested in the same
file or data. Applications register this interest by joining ses-
sions or files (or both) with the ToolTalk service. This file and
session information is used by the ToolTalk service in con-
junction with the message patterns to determine which ap-
plications should receive a message.

File Scope. Whenamessageis “scoped” to a file, only those
applications that have joined the file (and match the remain-
ing attributes) will receive the message. Applications that
share interest in a file do not have to be running in the same
session.

Session Scope. When a message is scoped to a session, only
those applications that have joined the session will be con-
sidered as potential recipients.

File In Session Scope. Applications can be very specific
about the distribution of a message by specifying file-in-ses-
sion for the message scope. Only those applications that have
joined both the file and the session indicated will be consid-
ered as potential recipients.

Chapter 1. ToolTalk® Overview

How the ToolTalk
Service Routes
Messages

A notice takes a one-way trip, as shown in Figure 1.4.1. The
sender creates a message, fills in attribute values, and sends
it. The ToolTalk service matches message and pattern at-
tribute values, and gives a copy of the message to one han-
dler and to all matching observers. File-scoped messages are
automatically transferred across session boundaries to pro-
cesses that have declared interest in the file.

Sender —3>| State = Sent

ToolTalk Handler &

= Service > State=Sent = Observers

Figure 1.4.1. Notice routing.

1.4.2.

ToolTalk Message
Delivery
Algorithm
Process-Oriented
Message Delivery

A request, as shown in Figure 1.4.2, takes a round-trip
from sender to handler and back; copies of the message take
one-way side trips to observers. The ToolTalk service delivers
a request to, at most, one handler. The handler adds results
to the message and sends it back. Other processes can ob-
serve a request before it is handled, after, or both; observers
absorb a request without sending it back.

To help you further understand how the ToolTalk service de-
termines message recipients, this section walks through the
creation and delivery of both process-oriented messages and
object-oriented messages.

For many process-oriented messages, the sender knows the
ptype or the procid of the process that should handle it. For
other messages, the ToolTalk service can determine the han-
dler from the operation and arguments of the message.

1. Initialize
The sender obtains a message handle and fills in the
address, scope, and class attributes.

If the address is TT_PROCEDURE, the sender fills in the
operation and arguments.

If the sender has declared only one ptype, the ToolTalk
service will fill sender_ptype in by default. Otherwise the
sender must fill it in.

If the scope is TT_FILE, file must be filled in or defaulted.
If the scope is TT_SESSION, session must be filled in or de

1.4.2. ToolTalk Message Delivery Algorithm 49

Figure 1.4.2. Request routing.

50

Observers

T

Sender

State=Sent

State = Sent

\

\

\
\

ToolTalk

Service Handler

State=Handled
or Failed

State = Sent

|

Observers

faulted. If the scope is TT_BOTH, both must be filled in or
defaulted.

To speed up dispatch, the sender may fill in the handler_p-
type if known. While this may speed operations somewhat,
it reduces flexibility by not allowing processes of one ptype
to substitute for another. Also, the disposition attribute must
be specified by the sender in this case.

2. Dispatch to Handler
The ToolTalk service compares the address, scope,
message class, operation, and argument modes and
types to all signatures in the Handle section of each

ptype.

Only one ptype will usually contain a message pattern
that matches the operation and arguments and specifies
Handle. If a handler ptype is found, then the ToolTalk service
fills in opnum, handler_ptype, and disposition from the
ptype message pattern.

If the address is TT_HANDLER, the ToolTalk service looks
for the specified procid and adds the message to the han-

Chapter 1. ToolTalk® Overview

dler’s message queue. TT_HANDLER messages cannot be
observed because no pattern matching is done.

3. Dispatch to Observers
The ToolTalk service compares the scope, class, oper-
ation, and argument types to all message patterns in
the Observe section of each ptype.

For all message patterns that match the message and spec-
ify TT_QUEUE or TT_START, the ToolTalk service attaches an
“observe promise” record to the message that specifies the
ptype and the queue/start options. The ToolTalk service then
adds the ptype to its internal ObserverPtypeList.

4. Deliver to Handler
If a running process has a handler message pattern
registered that matches the message, the ToolTalk ser-
vice delivers the message to it. Otherwise, the ToolTalk
service honors the disposition (start or queue) options.

If more than one process has registered a dynamic pattern
that matches the handler information, the more specific pat-
tern is given preference (by counting the number of non-
wildcard matches). If two patterns are equally specific, the
choice of handler is arbitrary.

5. Deliver to Observers

The ToolTalk service delivers the message to all run-
ning processes that have Observer patterns registered
which match the message. As each delivery is made,
the ToolTalk service checks off any “observe promise”
for the ptype of the observer. After this process, if there
are any “observe promises” left unfulfilled, the
ToolTalk service honors the start and queue options in
the promises.

The set of patterns matched against for delivery depends
on the scope of the message. If the scope is TT_SESSION,
only patterns for processes in the same session are checked.
If the scope is TT_FILE, patterns for all processes observing
the file are checked. If the scope is TT_BOTH, both sets of pro-
cesses are checked.

Example In this example, a debugger and a editor interact via ToolTalk
messages so the debugger can use the editor to display the
source around a breakpoint.

The editor has the following Handle pattern in its ptype:

1.4.2. ToolTalk Message Delivery Algorithm 51

Object-Oriented
Messages Delivery

52

(HandlerPtype: TextEditor;

Op: ShowLine;

Scope: TT_SESSION;

Session: my_session_id;

File: /home/gondor/joe/src/ebe.c)

When the debugger reaches a breakpoint, it sends a mes-
sage with op (ShowLine), argument (the line number), file
(the file name), session (the current session id), and scope
(TT_SESSION).

The ToolTalk service matches this message against all reg-
istered patterns, finds the pattern registered by the editor,
and delivers the message to the editor. The editor then scrolls
to the line indicated in the argument.

Many messages handled by the ToolTalk service are directed
at objects but are actually delivered to the process that man-
ages the object. The message signatures in an otype, which
include the ptype of the process that can handle each specific
message, help the ToolTalk service determine to which pro-
cess to deliver an object-oriented message. Here are the steps
in the creation and delivery of an object-oriented message.

1. Initialize
The sender fills in the class, operation, arguments, and
the target objid attributes.

The sender attribute is automatically filled in by the
ToolTalk service. The sender can either fill in the sender_p-
type and session attributes or allow the ToolTalk service to
fill in the default values for these.

2. Resolve
The ToolTalk service looks up the objid in the ToolTalk
database and fills in the otype and file attributes.

3. Dispatch to Handler
The ToolTalk service searches through the otype defi-
nitions looking for Handler message patterns match-
ing the message’s operation and arguments.

When a match is found, the ToolTalk service fills in scope,
opnum, handler_ptype, and disposition from the otype mes-
sage pattern.

4. Dispatch to Object-Oriented Observers
The ToolTalk service compares the message’s class,
operation, and argument attributes against all Ob-

Chapter 1. ToolTalk® Overview

serve message patterns of the otype. When a match is
found, if the message pattern specifies TT_QUEUE or
TT_START, the ToolTalk service attaches an “observe
promise” record to the message that specifies the
ptype and the queue and start options.

5. Dispatch to Procedural Observers

The ToolTalk service continues to match the message’s
class, operation, and argument attributes against all
Observe message patterns of all ptypes asin “”. When
a match is found, if the signature specifies TT_QUEUE
or TT_START, the ToolTalk service attaches an “ob-
serve promise” record to the message, specifying the
ptype and the queue/start options.

6. Deliver to Handler
If a running process has a Handler pattern registered
which matches the message, the ToolTalk service de-
livers the message to it. Otherwise, the ToolTalk ser-
vice honors the disposition (queue/start) options.

If more than one process has registered a dynamic pattern
that matches the handler information, the more specific pat-
tern is given preference (by counting the number of non-
wildcard matches). If two patterns are equally specific, the
choice of handler is arbitrary.

7. Deliver to Observers

The ToolTalk service delivers the message to all run-
ning processes that have Observer patterns registered
which match the message. As each delivery is made,
the ToolTalk service checks off any “observe promis-
es” for the ptype of the observer. After this process, if
there are any “observe promises” left unfulfilled, the
ToolTalk service honors the disposition (queue/start)
options in the promises.

The set of patterns matched against for delivery depends
on the scope of the message. If the scope is TT_SESSION,
only patterns for processes in the same session are checked.
If the scope is TT_FILE, patterns for all processes observing
the file are checked. If the scope is TT_BOTH, both sets of pro-
cesses are checked.

Otype addressing There are times when it is necessary to send an object-ori-
ented message without knowing the objid. To handle these
cases, the ToolTalk service provides otype addressing. This

1.4.2. ToolTalk Message Delivery Algorithm 53

Example

54

addressing mode requires the sender to specify the opera-
tion, arguments, scope, and otype. The ToolTalk service looks
in the specified otype definition for a message pattern match-
ing the message’s operation and arguments to locate the han-
dling and observing process. The dispatch and delivery then
proceed as in messages to specific objects.

In this example, a spreadsheet application, “FinnogaCalc”, is
integrated with the ToolTalk service. When it starts, it regis-
ters with the ToolTalk service by declaring its ptype, Fin-
nogaCalc. and joining its default session. When it loads a
worksheet, hatsize.wks, FinnogaCalc also tells the
ToolTalk service it is observing the worksheet by joining the
worksheet file. A second instance of FinnogaCalc (called Fin-
nogaCalc,) starts, loads a worksheet, wardrobe .wks, and
registers with the ToolTalk service in the same way. The user
tells FinnogaCalc and FinnogaCalc, that the value of cell B2
in hatsize.wks should appear in cell C14 of war-
drobe.wks.

In order for FinnogaCalc to be able to send values to cell
C14, FinnogaCalc, creates an object spec for the cell by call-
ing a ToolTalk function. This object is identified by an objid.
FinnogaCalc, then gives this objid to FinnogaCalc, perhaps
by passing it via the clipboard. FinnogaCalc then remembers
that its cell B2 gets its data from the object identified by this
objid. When FinnogaCalc changes the value of cell B2, it
sends a message to the object identified by this objid. The
message contains an operation that FinnogaCalc, will recog-
nize as meaning “here are new contents for a cell” and an
argument containing the new data.

To deliver the message, the ToolTalk service:

1. Examines the spec associated with the objid and finds
that the type of the objid is FinnogaCalc_cell and
that the corresponding object is in the file war-
drobe.wks

2. Consults the otype definition for Finnoga-Calc_
cell. From the otype, the ToolTalk service determines
that this message is observed by processes of ptype
FinnogaCalc and that the scope of the message
should be TT_FILE.

3. Matches the message against registered patterns and
locates all processes of this ptype that are observing

Chapter 1. ToolTalk® Overview

14.3
Creating and
Fillingin
Messages

the proper file. FinnogaCalc, matches, but Finnoga-
Calc doesn’t as it is looking at the wrong file.

4. Delivers the message to FinnogaCalc,.

FinnogaCalc, can then update the value in war-
drobe.wks and display the new value.

The ToolTalk functions used to create and fill in messages are
listed in Table 1.4.2.

he ToolTalk service provides two methods of creating mes-
sages: these process- and object-oriented notice and request
functions

* tt_pnotice_create()
* tt_prequest_create()

¢ tt_onotice_create()
* tt_orequest_create()

and the general-purpose function, tt_message_cre-
ate() .

Table 1.4.2. Creating and filling in messages.

Return Type ToolTalk Function

Tt_message tt_onotice_create(const char *objid, const char *op)

Tt_message tt_orequest_create(const char *objid, const char *op)

Tt_message tt_pnotice_create(Tt_scope scope, const char *op)

Tt_message tt_prequest_create(Tt_scope scope, const char *op)

Tt_message tt_message_create(void)

Tt_status tt_message_address_set(Tt_message m, Tt_address p)

Tt_status tt_message_arg_add(Tt_message m, Tt_mode n, const char *vtype, const char
*value)

Tt_status tt_message_arg_bval_set(Tt_message m, int n, const unsigned char *value, int
len)

Tt_status tt_message_arg_ival_set(Tt_message m, int n, int value)

Tt_status tt_message_arg_val_set(Tt_message m, int n, const char *value)

1.4.3 Creating and Filling in Messages

55

Return Type ToolTalk Function
Tt_status tt_message_barg_add(Tt_message m, Tt_mode n, const char *vtype, const
unsigned char *value, int len)
Tt_status tt_message_iarg_add(Tt_message m, Tt_mode n, const char *vtype, int value)
Tt_status tt_message_class_set(Tt_message m, Tt_class c)
Tt_status tt_message_file_set(Tt_message m, const char *file)
Tt_status tt_message_handler_ptype_set(Tt_message m, const char *ptid)
Tt_status tt_message_handler_set(Tt_message m, const char *procid)
Tt_status tt_message_object_set(Tt_message m, const char *objid)
Tt_status tt_message_op_set{Tt_message m, const char *opname)
Tt_status tt_message_otype_set(Tt_message m, const char *otype)
Tt_status tt_message_scope_set(Tt_message m, Tt_scope s)
Tt_status tt_message_sender_ptype_set(Tt_message m, const char *ptid)
Tt_status tt_message_session_set(Tt_message m, const char *sessid)
Tt_status tt_message_status_set(Tt_message m, int status)
Tt_status tt_message_status_string_set(Tt_message m, const char *status_str)
Tt_status tt_message_user_set(Tt_message m, int key, void *v)

The ToolTalk service provides the process- and object-ori-
ented notice and request functions to make message creation
simpler for the common cases. They are functionally identi-
cal to strings of other tt_message_create() and tt_
message_<attribute>_set () calls, but are easier to write
and read.

Note - The code samples that illustrate the calls used to per-
form the operations in this section are mostly fragments
from the sample programs, ttsamplel and Sun_Edit-
Demo. These sample programs can be found in this directo-
ry:SOPENWINHOME/share/src/tooltalk/

56 Chapter 1. Tool Tulk® Overview

Creatin g and Fillin g The ToolTalk service provides two methods for creating pro-
InP d l cedural messages: tt_pnotice_create() or tt_pre-

n 'roceaura guest_create();and, tt_message_create().
Messages

Using pnotice and To get a “handle” or “opaque pointer” to a new message ob-
prequest Functions ject for a procedural notice or request, use tt_pno-
tice_create() or tt_prequest_create(). Use this
handle on succeeding calls to refer to the message.
When you use tt_pnotice_create() or tt_pre-
quest_create (), yousupply the following two attributes
as arguments:

* scope
Fill in the scope of the message delivery. Potential re-
cipients could be joined to:

° TT_SESSION

° TT_FILE

° TT_BOTH

° TT_FILE_IN_SESSION

Depending on the scope, the ToolTalk service will fill
in the default session and/or file.

[] Op
Fill in the operation that describes the notice or re-
quest you are making. To determine the operation
name, consult the ptype definition for the target pro-
cess or other protocol definition.

You can fill in more message attributes, such as operation
arguments, with tt_message_<attribute>_set calls.

Here’s sample code for creating a pnotice from ttsam-
plel..

/*

* Create and send a ToolTalk notice message
* ttsamplel_value(in int <new value)

*/

msg_out = tt_pnotice_create(TT_SESSION, “ttsamplel_value”);

tt_message_arg_add(msg_out, TT_IN, “integer”, NULL);

tt_message_arg_ival_set (msg_out, 0, (int)xv_get(slider,
PANEL_VALUE)) ;

tt_message_send{msg_out) ;

1.4.3 Creating and Filling in Messages 57

/*

* Since this message is a notice, we don’t expect a reply, so
* there’s no reason to keep a handle for the message.

x/

tt_message_destroy (msg_out) ;

Using tt_message_create For a procedural message created with tt_message_cre-

58

ate (), set these attributes using the tt_message_<at-
tribute>_set () calls:

* class
Use TT_REQUEST for messages that return values or
status. You will be informed when the message is han-
dled or queued, or when a process is started to handle
the request.

Use TT_NOTICE for messages that just notify other pro-
cesses of events.

¢ address
Use TT_PROCEDURE to send the message to any pro-
cess that can perform this operation with these argu-
ments. Fill in op and args attributes of this message.

Use TT_HANDLER to send this to a particular process.
Specify the handler attribute value.

If you know the exact procid of the handler, you can ad-
dress messages to it directly and the ToolTalk service will de-
liver the message directly — no pattern matching is done and
no other applications can observe the message. The usual
way this happens is for one process to make a general request
and then pick the handler attribute out of the reply, directing
further messages to the same handler. This allows two pro-
cesses to rendezvous through broadcast message passing
and then go into a dialogue.

* scope
Fill in the scope of the message delivery. Potential re-
cipients could be joined to:

° TT_SESSION

° TT_FILE

° TT_BOTH

° TT_FILE_IN_SESSION

Chapter 1. ToolTalk® Overview

Creating and Filling
In Object-Oriented
Messages

Using onotice and orequest
Functions

1.4.3 Creating and Filling in Messages

Depending on the scope, the ToolTalk service will fill in
the default session and/or file.

[] Op
Fill in the operation that describes the notification or
request you're making. To determine the operation
name, consult the ptype definition for the target pro-
cess or other protocol definition.

* args
Fill in any arguments specific to the operation. Use
tt_message_arg_add() to add each argument in
turn. For each argument, specify:

° Tt_mode
Specify TT_IN, TT_OUT, or TT_INOUT.If Tt_mode
is TT_IN or TT_INOUT, specify the value.

° value type (vtype)

The ToolTalk service provides two methods to create object-
oriented messages: tt_onotice_create() or tt_ore-
quest_create(); and tt_message_create(). The
ToolTalk service provides the onotice (object-oriented notice)
and orequest (object-oriented request) functions to make
message creation simpler for the common cases. They are
functionally identical to strings of other t t_message_cre-
ate() and tt_message_<attribute>_set () calls, but are
easier to write and read.

To get a “handle” or “opaque pointer” to a new message ob-
ject for a object-oriented notice or request, use tt_ono-
tice_create() or tt_orequest_create (). Use this
handle on succeeding calls to refer to the message.

When you use tt_onotice_create() or tt_ore-
quest_create (), yousupply the following two attributes
as arguments:

* objid
Fill in the unique object identifier.

[] Op
Fill in the operation that describes the notice or re-
quest you are making. To determine the operation
name, consult the ptype definition for the target pro-
cess or other protocol definition.

You can fill in more message attributes, such as operation
arguments, with tt_message_<attribute>_set calls.

59

Here’s how Sun_EditDemo creates and sends an ore-
quest during its notify callback function for cnt1_ui_hil-

ite_button.

/ *
* Notify callback function for ‘cntl_ui_hilite_button’.
*/
void
cntl_ui_hilite_button_handler (item, event)
Panel_item item;
Event *event;
{
Tt_message msg;
if (cntl_objid == (char *)0) {
xv_set (cntl_ui_base_window, FRAME_LEFT_ FOOTER,
“No object id selected”, NULL);
return;
}
msg = tt_orequest_create(cntl_objid, “hilite_obj”);
tt_message_arg_add(msg, TT_IN, “string”, cntl_objid);
tt_message_callback_add(msg, cntl_msg_callback);
tt_message_send(msg) ;
}

Using tt_message_create For an object-oriented message created with tt_mes-
sage_create (), set these attributes using the tt_mes-
sage_<attribute>_set () calls:

* class
Use TT_REQUEST for messages that return values or
status. You will be informed when the message is han-
dled or queued, or when a process is started to handle
the request.
Use TT_NOTICE for messages that just notify other
processes ofevents.

¢ address
Use TT_OBJECT to send the message to a specific ob-
ject that performs this operation with these argu-
ments. Fill in object, op, and args attributes of this
message.
Use TT_OTYPE to send this message to this type of ob-
ject that can perform this operation with these argu-
ments. Fill in otype, op, and args attributes of the
message.

60 Chapter 1. ToolTalk® Overview

1.4.4
Adding Message
Callbacks

1.4.4 Adding Message Callbacks

L] Op
Fill in the operation that describes the notification or
request you're making. To determine the operation
name, consult the ptype definition for the target pro-
cess or other protocol definition.

* args
Fill in any arguments specific to the operation. Use
tt_message_arg_add to add each argument in
turn. For each argument, specify:

° Tt_mode
Specify TT_IN, TT_OUT, or TT_INOUT.If Tt_-
mode is TT_IN or TT_INOUT, specify the value.

° value type (vtype)

You can add callbacks to requests so when the reply is re-
ceived, the callback routine is automatically called to exam-
ine the results of the reply and take appropriate actions. Use
tt_message_callback_add() to add the callback rou-
tine to your request.

When the reply comes back and the message has been pro-
cessed via the callback routine, be sure to destroy the mes-
sage after the callback function returns TT_CALLBACK_
PROCESSED. Use tt_message_destroy () to destroy the
message.

Here’s a code fragment to illustrate this requirement:

Tt_callback action

sample_msg_callback (Tt_message m, Tt_pattern p)
{
. process the msg ...

tt_message_destroy(m) ;
return TT_CALLBACK_PROCESSED;

In Sun_EditDemo’s cntl_ui_hilite_button func-
tion shown in “The ToolTalk service provides two methods
to create object-oriented messages: tt_onotice_create() or
tt_orequest_create(); and tt_message_create(). The ToolTalk
service provides the onotice (object-oriented notice) and ore-
quest (object-oriented request) functions to make message
creation simpler for the common cases. They are functionally
identical to strings of other tt_message_create() and tt_mes-
sage_<attribute>_set() calls, but are easier to write and read.”

61

on page 59, a callback is added to the request to highlight an
object in the edit window. This callback, cnt1_msg_call-
back, examines the state field of the reply and takes action if
the state is started, handled, or failed.

Here’s the cnt1_msg_callback:

* Default callback for all the ToolTalk messages we send.
*/

Tt_callback_action

cntl_msg_callback(m, p)

Tt_message m;

Tt_pattern p;

int mark;
char msg[255];
char *errstr;

mark = tt_mark();
switch (tt_message_state(m)) {

case TT_STARTED:
xv_set (cntl_ui_base_window, FRAME_LEFT_FOOTER,

"Starting editor...", NULL);
break;
case TT_HANDLED:
xv_set (cntl_ui_base_window, FRAME_LEFT_FOOTER, "", NULL);
break;

case TT_FAILED:
errstr = tt_message_status_string(m);

if (tt_pointer_error(errstr) == TT_OK && errstr) {
sprintf (msg, "%s failed: %s", tt_message_op(m), errstr);
} else if (tt_message_status(m) == TT_ERR_NO_MATCH) {

sprintf (msg, "%$s failed: Couldn't contact editor",
tt_message_op(m),
tt_status_message(tt_message_status(m)));
} else {
sprintf (msg, "%s failed: %s",
tt_message_op(m),
tt_status_message(tt_message_status(m)));

}
xv_set {cntl_uil_base_window, FRAME_LEFT_FOOTER, msg, NULL);

break;
default:
break;

62

Chapter 1. ToolTalk® Overview

* no further action required for this message. Destroy it
* and return TT_CALLBACK_PROCESSED so no other callbacks will
* be run for the message.

*/

tt_message_destroy (m) ;

tt_release(mark) ;

return TT_CALLBACK_PROCESSED;

1.4.5
Sending a Message

1.4.5 Sending a Message

Send the message with tt_message_send ().

If the ToolTalk service returns TT_WRN_STALE_OBJID,
the ToolTalk service has found a forwarding pointer in the
ToolTalk database indicating that the object mentioned in the
message has been moved. The ToolTalk service will go ahead
and send the message with the fresh objid. Use tt_messa-
ge_object () to retrieve the fresh objid from the message
and put the new objid into your internal data structure.

If you will not need the message in the future (perhaps if
the message was a notice), free up the storage space by delet-
ing the message with tt_message_destroy (). If you're
expecting a reply and want to compare it against your re-
quest, do not destroy the message until you've handled the

reply.

63

1.5
Receiving
Messages

1.5.1
Retrieving
Messages

64

This section describes how to retrieve messages delivered to
your application and how to handle the message once you've
examined it. It also shows how to send replies to requests that
you receive. As mentioned earlier, when you're through with
a message, destroy the message to free up storage.

To retrieve a message from the ToolTalk service and han-
dle it, modify your application to support these operations.

¢ Retrieving Messages
* Handling Messages
* Replying to Messages
* Destroying Messages

Note - The code samples that illustrate the calls used to per-
form the operations are mostly fragments from the sample
programs, t tsamplel and Sun_EditDemo. These sample
programs are in this directory:SOPENWINHOME/share/
src/tooltalk/

When a message arrives for your process, the ToolTalk-
supplied file descriptor becomes active. When notified of the
active state of the file descriptor, call tt_message_re-
ceive () to get a handle for the incoming message.

Note - Handles for messages remain constant. For example,
when a process sends a message, both the message and any
replies to the message have the same handle.

Chapter 1. ToolTalk® Overview

How The ToolTalk
Service Invokes
Callbacks

1.5.2
Handling
Messages

1.5.2 Handling Messages

To easily identify and process messages you receive, you
can:

* Add a callback to a dynamic pattern with tt_pat-
tern_callback_add (). When you retrieve the mes-
sage, the ToolTalk service will invoke any message or
pattern callbacks. See Section 3, “Message Patterns,” for
more information on placing callbacks on patterns.

* Retrieve the message’s opnum if you are receiving mes-
sages that match your ptype message patterns.

You can recognize and handle replies to messages you sent
by:

* Placing specific callbacks on requests before you send
them with tt_message_callback_add() . See Sec-
tion 4, “Sending Messages,” for more information on
placing callbacks on messages .

* Comparing the handle of the message you sent with the
message you just received. The handles will be the same
if the message is a reply.

* Placing information meaningful to your application in
a request with the tt_message_user_set () call

Here’s a code from t t samplel for receiving a message

The following flow diagram, Figure 5.1, illustrates how the
ToolTalk service invokes message and pattern callbacks
when tt_message_receive () iscalled to retrieve a new
message.

When handling a message, you examine the message and
take appropriate action. To examine the attributes of a mes-
sage you have received, use the ToolTalk functions listed in
Table 1.5.1.

Before you start retrieving values, it’s a good idea to obtain
amark on the ToolTalk API stack so you can release all at once
the information the ToolTalk service returns to you. Here’s
how ttsamplel allocates storage, examines a message’s
contents, and releases the storage.

65

/*

* Get a storage mark so we can easily free all the data
* ToolTalk returns to us.

*/

mark = tt_mark();

if (O==strcmp(“ttsamplel_value”, tt_message_op{msg_in))) {
tt_message_arg_ival (msg_in, 0, &val_in);
Xv_set (gauge, PANEL_VALUE, val_in, NULL);

tt_message_destroy (msg_in) ;
tt_release(mark) ;
return;

tt_message_receive()gets |

new message

ey

A

message yes invoke first > remove first
callbacks? message callback message callback
noj

| A

pattern

invoke first remove first
callbacks?

pattern callback pattern callback

|
|

yes return
‘ TT_WRN_PROCESSED

Did any callback return
TT_CALLBACK_PROCESS

return no
message

Figure 1.5.1. How callbacks are invoked.

Table 1.5.1. Examining message attributes.

Return Type ToolTalk Function
Tt_address tt_message_address(Tt_message m)
Tt_status tt_message_arg_bval(Tt_message m, int n, unsigned char **value, int *len)
Tt_status tt_message_arg_ival(Tt_message m, int n, int *value)
Tt_mode tt_message_arg_mode(Tt_message m, int n)
66 Chapter 1. ToolTalk® Overview

Return Type ToolTalk Function
char * tt_message_arg_type(Tt_message m, int n)
char * tt_message_arg_val(Tt_message m, int n)
int tt_message_args_count(Tt_message m)
Tt_class tt_message_class(Tt_message m)
Tt_disposition | tt_message_disposition(Tt_message m)
char * tt_message_file(Tt_message m)
gid_t tt_message_gid(Tt_message m)
char * tt_message_handler(Tt_message m)
char * tt_message_handler_ptype(Tt_message m)
char * tt_message_object(Tt_message m)
char * tt_message_op(Tt_message m)
int tt_message_opnum(Tt_message m)
char * tt_message_otype(Tt_message m)
Tt_pattern tt_message_pattern(Tt_message m)
Tt_scope tt_message_scope(Tt_message m)
char * tt_message_sender(Tt_message m)
char * tt_message_sender_ptype(Tt_message m)
char * tt_message_session(Tt_message m)
Tt_state tt_message_state(Tt_message m)
int tt_message_status(Tt_message m)
char * tt_message_status_string(Tt_message m)
uid_t tt_message_uid(Tt_message m)
void * tt_message_user(Tt_message m, int key)

1.5.2 Handling Messages 67

Handlin g Requ ests If you have received a request (Tt_class = TT_REQUEST), you
must do one of the following:

* Reply to the request
* Reject or fail the request

Replying to Requests When you receive a request, you need to do the following
steps:

1. Perform the desired operation.

2. Fillin any argument values with modes of TT_OUT or
TT_INOUT.

3. Send the reply to the message.

The ToolTalk functions used to reply to messages are listed
in Table 1.5.2.

Table 1.5.2. Replying to requests.

Return Type ToolTalk Function

Tt_mode tt_message_arg_mode(Tt_message m, int n)

Tt_status tt_message_arg_bval_set(Tt_message m, int n, const unsigned char *value, int

len)

Tt_status tt_message_arg_ival_set(Tt_message m, int n, int value)

Tt_status tt_message_arg_val_set(Tt_message m, int n, const char *value)

Tt_status tt_message_reply(Tt_message m)
Rejecting or Failing a The ToolTalk functions used to reject or fail a request are
Request listed in Table 1.5.3.
Rejecting a Request If you have examined the request and your application is not

currently able to handle the request but another application
might be able to handle the request, use tt_message_re-
ject () toreject the message. The ToolTalk service will then
attempt to find another receiver to handle the request. If the
ToolTalk service cannot find a handler that is currently run-
ning, it will examine the disposition attribute and either
queue the message or attempt to start applications with
ptypes that contain the appropriate message pattern.

Failing a Request If you have examined the request and the requested opera-
tion cannot be performed by you or any other process of the
same ptype as yours, use tt_message_fail () to inform

68 Chapter 1. ToolTalk® Overview

the ToolTalk service that the operation could not be per-
formed. The ToolTalk service will inform the sender that the
request failed.

Table 1.5.3. Rejecting or failing requests.

Return Type ToolTalk Function
Tt_status tt_message_reject(Tt_message m)
Tt_status tt_message_fail(Tt_message m)
Tt_status tt_message_status_set(Tt_message m, int status)
Tt_status tt_message_status_string_set(Tt_message m, const char *status_str)

To aid the sender in understanding why the request failed,
use tt_message_status_set () and/or tt_messag-
e_status_string_set () before calling tt_message_-
fail(). The status code that you specify with

tt_message_status_set () must be greater than 2047
(which = TT_ERR_LAST).

1.5.3 After you have processed a message (and perhaps sent a re-
. ly), free up the storage space by deleting the message with
Destroying ply) p ge space by 8 8

tt_message_destroy ().
Messages

1.5.3 Destroying Messages 69

1.6
Objects

1.6.1
Creating Object
Specs

70

This section tells you how to create ToolTalk specs for objects
your application creates and manages. Before identifying the
type of object you create, you need to define otypes and store
them in the Classing Engine. See Chapter 1.3, “Message Pat-
terns,” for information on otypes.

The ToolTalk service uses spec and otype information
when determining object-oriented message recipients.

Create and manage ToolTalk specs for your application
objects by:

* Creating Object Specs

¢ Updating Object Specs

* Maintaining Object Specs
* Destroyiny Object Specs

Note - The code samples that illustrate the calls used to per-
form the operations are mostly fragments from the sample
program, Sun_EditDemo. This sample program is in this
directory:

SOPENWINHOME/share/src/tooltalk/

In order for the ToolTalk service to be able to deliver mes-
sages to your objects, create a spec that identifies the object
and its otype. When you create a spec, you get a string name,
the objid, for the object.

You can put properties on the spec. One use of spec prop-
erties is to store the location of the objid in the spec proper-
ties. You can use this location to identify where the object is
in your tool’s internal data structures. While the simplest so-
lution would probably be for you to store the objid in your
own internal data, the ToolTalk service recognizes that this is
not always possible. For example, for objects in plain ASCII
text files, there’s no place for you to store the objid.

Chapter 1. ToolTalk® Overview

Table 1.6.1. Creating objects.

Another use of spec properties is for the convenience of
the end user. A user may want to associate properties with
the object such as a comment or object name that they can
view later. Your application or another ToolTalk-based tool
could search for and display these properties for the user.

The ToolTalk functions used to create and write object
specs are listed in Table 1.6.1.

Return Type ToolTalk Function

char * tt_spec_create(const char *filepath)

Tt_status tt_spec_prop_set(const char *objid, const char *propname, const char *value)

Tt_status tt_spec_prop_add(const char *objid, const char *propname, const char *value)

Tt_status tt_spec_bprop_add(const char *objid, const char *propname, const unsigned
char *value, int length)

Tt_status tt_spec_bprop_set(const char *objid, const char *propname, const unsigned char
*value, int length)

Tt_status tt_spec_type_set(const char *objid, const char *otid)

Tt_status tt_spec_write(const char *objid)

1.6.1 Creating Object Specs

To create an object spec in memory and obtain an objid for
the object, use tt_spec_create(). Use tt_spec_-
type_set () to assign an otype for the object spec. The type
must be set before the spec is written for the first time, and
cannot be changed thereafter.

To store properties in a spec, use tt_spec_prop_
set (). You can add to the list of values associated with the
property with tt_spec_prop_add().

After setting the type and adding properties to a spec,
make the object spec a permanent ToolTalk item and visible
to other users with tt_spec_write(). When you call
tt_spec_write(), the ToolTalk service writes the spec
into the ToolTalk database.

71

When Sun_Ed1itDemo creates an object for its user, it cre-
ates the object spec, sets the otype, writes the spec to the
ToolTalk database, and wraps the user’s selection with C-
style comments. Here’s how Sun_EditDemo does this:

*/

Make a ToolTalk spec out of the selected text in this textpane. Once
the spec is successfully created and written to a database, wrap the
text with C-style comments in order to delimit the object and send out
* a notification that an object has been created in this file.

Menu_item

edit_ui_make_object (item, event)

Panel_item item;

Event

{

72

*event;

int

char

char

char
Textsw_index
char

char
Tt_message

if (! get_selection(edit_ui_xserver, edit_ui_textpane,
xv_set (edit_ui_base_window, FRAME_LEFT_FOOTER,

tt_release(mark);
return item;

}

file = tt_default_file();

if (file ==

tt_release (mark) ;
return item;

*objid;

*file;

*sel;

first, last;
obj_start_text[100];
obj_end_text[100];
msg;

(char *)0) {
xv_set (edit_ui_base_window, FRAME_LEFT_FOOTER,

mark = tt_mark();

&sel, &first, &last)) {

“First select some text”, NULL);

“Not editing any file”, NULL);

Chapter 1. ToolTalk® Overview

tt_pnotice_create(TT_FILE_IN_SESSION, "Sun_EditDemo_new_object”) ;

/* create a new spec */

objid = tt_spec_create(tt_default_file());
if (tt_pointer_error (objid) != TT_OK) {
xv_set (edit_ui_base_window, FRAME_LEFT_FOOTER,
“Couldn’t create object”, NULL);
tt_release(mark) ;
return item;

/* set its otype */

tt_spec_type_set (objid, “Sun_EditDemo_object”);
if (tt_spec_write(objid) != TT_OK) {
xv_set (edit_ui_base_window, FRAME_LEFT_ FOOTER,
“Couldn’t write out object”, NULL);
tt_release(mark) ;
return item;

/* wrap spec’s contents (the selected text) with C-style */

/* comments. */

sprintf (obj_start_text,” /* begin_object(%s) */”, objid);

sprintf (obj_end_text,”/* end_object(%s) */”, objid);

(void)wrap_selection(edit_ui_xserver, edit_ui_textpane,
obj_start_text, obj_end_text);

/* now send out a notification that we’ve added a new object */

msg =

tt_message_file_set (msg, file);
tt_message_send(msg) ;

tt_release(mark) ;
return item;

Sun_EditDemo also sends out a procedure-addressed
notice after it creates the new object to update other applica-
tions who observe messages with the Sun_EditDemo_ne-
w_object operation. If other applications are displaying a
list of objects in a file managed by Sun_EditDemo, they up-
date their list after receiving this notice.

1.6.1 Creating Object Specs 73

1.6.2
Updating Object
Specs

1.6.3
Maintaining
Object Specs

To update spec properties, use tt_spec_prop_set () and
tt_spec_prop_add(), specifying the objid of the exist-
ing object spec. After you have updated the spec properties,
call tt_spec_write() to write the changes into the
ToolTalk database.

When you are updating an existing spec and the ToolTalk
service returns TT_WRN_STALE_OBJID when you call
tt_spec_write (), it has found a forwarding pointer to
the object in the ToolTalk database indicating that the object
has been moved. To obtain the fresh objid, create an object
message with the old objid and send it. The ToolTalk service
will return the same status code, TT_WRN_STALE_OBJID,
but will update the message objid attribute with the fresh
objid. Use t t _message_object () toretrieve the fresh ob-
jid from the message and put the new objid into your internal
data structure.

The ToolTalk service provides the functions listed in Table
1.6.2 to examine, query, compare, and move object specs. The
ToolTalk service also provides ToolTalk-aware shell com-
mands for copying, moving, and removing files that contain
object data.

Examinin I'd Spec You can examine the fc?llowing spec information with the
In fo rmation specified ToolTalk functions:
Table 1.6.2. Maintaining objects.
Return Type ToolTalk Function

char * tt_spec_file(const char *objid)

char * tt_spec_type(const char *objid)

char * tt_spec_prop(const char *objid, const char *propname, int i)

int tt_spec_prop_count(const char *objid, const char *propname)

Tt_status tt_spec_bprop(const char *objid, const char *propname, int i, unsigned char

**value, int *length)

char * tt_spec_propname(const char *objid, int n)

int tt_spec_propnames_count(const char *objid)

char * tt_objid_objkey(const char *objid)
74 Chapter 1. ToolTalk® Overview

Return Type ToolTalk Function

Tt_status tt_file_objects_query(const char *filepath, Tt_filter_function filter, void *context,
void *accumulator)

int tt_objid_equal(const char *objid1, const char *objid2)

char * tt_spec_move(const char *objid, const char *newfilepath)

¢ Pathname of the file containing the object
tt_spec_file()

¢ Otype of this object
tt_spec_type()
* Properties stored on the spec

tt_spec_prop()
tt_spec_bprop()

Queryin g fOT’ SPECS In Toquery for existing specs in a file and use a filter mechanism
File to obtain the specs you are interested in, first create your filter

function. Use tt_file_objects_query () to find all the
objects in the named file.

As the ToolTalk service finds each object, it calls your filter
function, passing the objid of the object and the two applica-
tion-supplied pointers. Your filter function does some com-
putation, and returns a Tt_filter_action value
(TT_FILTER_CONTINUE or TT_FILTER_STOP) to either
continue the query or stop and return immediately.

Here are the steps Sun_EditDemo goes through when
obtaining a list of specs::

/*

* Called to update the scrolling list of objects for a file. Uses

* tt_file_objects_query to find all the ToolTalk objects.

*/

int

cntl_update_obj_panel ()

{
static int list_item = O;
char *file;
int 1;

cntl_objid = (char *)O0;

for (1 = list_item; 1 >= 0; i--) {
xv_set (cntl_ui_olist, PANEL_LIST DELETE, i, NULL);

1.6.3 Maintaining Object Specs 75

list_item = 0;
file = (char *)xv_get(cntl_ui_file_field, PANEL_VALUE);
if (tt_file_objects_query(file,
if (tt_file_objects_query(file,
(Tt_filter_function)cntl_gather_specs,
&list_item, NULL) != TT_OK) {
xv_set (cntl_ui_base_window, FRAME_LEFT_ FOOTER,
“Couldn’t query objects for file”, NULL);
return 0;

return 1;

Within the tt_file_objects_guery() function, it
calls cnt1_gather_specs, a filter function that inserts ob-
jects into a scrolling list.

Here’s the filter function used during the query:

/*
* Function to insert the objid given into the scrolling lists of objects
* for a file. Used inside tt_file_objects_query as it iterates through
* all the ToolTalk objects in a file.
*/
Tt_filter_action
cntl_gather_specs(objid, list_count, acc)
char *objid;
void *list_count;
void *acc;

int *i = (int *)list_count;

xv_set (cntl_ui_olist, PANEL_LIST INSERT, *i,
PANEL_LIST_STRING, *i, objid,
NULL) ;

*i= (%1 o+ 1);

/* continue processing */
return TT_FILTER_CONTINUE;

}
Comparing Ob]ect Use tt_objid_equal() to see if two objids are the same.
ecs tt_objid_equal() is better than strcmp for this pur-
p pose since it returns “1” even in the case where one objid is
a forwarding pointer for the other.
76 Chapter 1. ToolTalk® Overview

Moving Object Specs

Copying, Moving, or
Removing Files with
Object Data

The objid contains a pointer to a particular file system where
the spec information is stored. To keep spec information as
available as the object described by the spec, the ToolTalk
service stores the spec information on the same file system
as the object. This means that if the object moves, the spec
must move too.

Use tt_spec_move () to notify the ToolTalk service
when an object moves from one file to another (say, through
cut and paste). If a new objid is not required (because the new
and old files are in the same file system), the ToolTalk service
returns TT_WRN_SAME_OBJID. If the object moved to an-
other file system, the ToolTalk service returns a new objid for
the object and leaves a forwarding pointer in the ToolTalk
database from the old objid to the new one. Update any in-
ternal data structures with the new objid.

When your process sends a message to an “out of date”
objid (one with a forwarding pointer), tt_message_-
send () will return a special status code, TT_WRN_STALE_-
OBJID, and replace the object attribute in the message with
anew objid that points to the same object in the new location.
Update any internal data structures that refer to the object
with the new objid.

When you copy, move, or destroy a file with object data in it,
use the ToolTalk functions listed in Table 1.6.3. These func-
tions ensure that the ToolTalk database servicing the disk
partition where the file is stored is kept up-to-date.

Table 1.6.3. Copying, moving, or removing files with object data.

Return Type ToolTalk Function
Tt_status tt_file_move(const char *oldfilepath, const char *newfilepath)
Tt_status tt_file_copy(const char *oldfilepath, const char *newfilepath)
Tt_status tt_file_destroy(const char *filepath)

/N

1.6.3 Maintaining Object Specs

Caution - Despite the efforts of the ToolTalk service and
integrated applications, it’s still possible for object
references to be broken by removing, moving, or
renaming files with UNIX commands like mv or rm.
Broken references like this will show up as undeliverable
messages.

77

Destroying Object
Specs

Encourage users of your application to use the following
ToolTalk-aware shell commands for copying, moving, and
removing files with object data.

e ttcp
ttmv
ttrm
ttrmdir
tttar

The man pages for these commands are located in this direc-
tory:
$OPENWINHOME/man/man1/

Use tt_spec_destroy () to destroy an object’s spec in-
stantly.

Chapter 1. ToolTalk® Overview

1.7
ToolTalk API

1.7.1
ToolTalk
Enumerated Types

Tt status

Tt mode

1.7 ToolTalk API

The ToolTalk enumerated types fall into nine categories:

tt_status
tt_mode
tt_scope
tt_class
tt_category
tt_address
tt_disposition
® tt_state

e tt_filter

® tt_callback

A Tt_status code is returned by all functions, sometimes
directly and sometimes encoded in a “error return value.”
See Section 2, “General Application Requirements,” for in-
structions on determining whether the Tt _status codeisa
warning or an error and for retrieving the catalog string for
aTt_status code.

The Tt_status codes are listed in Appendix C,
“ToolTalk Error Messages.” This appendix lists the following
for each status code:

* message id

¢ catalog string (from Sun_ToolTalk.moin SOPENWIN-
HOME/locale/C/LC_MESSAGES)

* meaning

* remedy

Tt_mode values specify who (sender, handler, observers)
writes a message argument. Possible values are:

79

Tt_scope

Tt class

80

TT_IN
The argument is written by the sender and read by the han-
dler and any observers.

TT_OUT
The argument is written by the handler and read by the
sender and any reply observers.

TT_INOUT
The argument is written by the sender and the handler and
read by all.

Tt_scope values for the Scope attribute of a message or pat-
tern indicate the set of processes eligible to receive the mes-
sage. Possible values and meanings are:

TT_SESSION
All processes joined to the indicated session are eligible.

TT_FILE
All processes joined to the indicated file are eligible.

TT_BOTH
All processes joined to either the indicated file or the indicat-
ed session are eligible.

TT_FILE_IN_SESSION
All processes joined to both the indicated session and the
indicated file are eligible.

These values for the class attribute of a message or pattern
indicate whether or not the sender wants an action to take
place after the message has been received. Possible values
and meanings are:

TT_NOTICE
Notice of an event. Sender does not want feedback on this
message.

TT_REQUEST

Request for some action to be taken. Sender must be notified
of progress, success or failure, and must receive any return
values.

Chapter 1. ToolTalk® Overview

Tt_category

Tt address

Tt_disposition

1.7.1 ToolTalk Eniumerated Types

Tt_category values for the category attribute of a pattern
indicate the receiver’s intent. Possible values and meanings
are:

TT_OBSERVE

Just looking at the message. No feedback will be given to
the sender.

TT_HANDLE
Will process the message, including filling in return values
if any.

Tt_address indicates which message attributes form the
address where the message will be delivered. Possible values
and meanings are:

TT_HANDLER

Addressed to a specific handler that can perform this oper-
ation with these arguments. Fill in handler, op, and arg at-
tributes of the message or pattern.

TT_OBJECT

Addressed to a specific object that performs this operation
with these arguments. Fill in object, op, and arg attributes
of the message or pattern.

TT_OTYPE

Addressed to the type of object that can perform this oper-
ation with these arguments. Fill in otype, op, and arg at-
tributes of the message or pattern.

TT_PROCEDURE

Addressed to any process that can perform this operation
with these arguments. Fill in the op and arg attributes of the
message or pattern.

Tt_disposition values indicate whether the receiver
should be started to receive the message or if the message
should be queued until the receiving process is started at a
later time. The message can also be thrown away if the re-
ceiver is not started.

Note that Tt_disposition values can be added to-
gether, so that TT_QUEUE+TT_START means both to queue
the message and to try to start a process. This can be useful
if the start can fail (or be vetoed by the user), to ensure the
message is processed as soon as an eligible process does start.

Possible values and their meanings are:

81

Tt state

Tt_filter

82

TT_DISCARD = 0
No receiver for this message. Message is returned to sender
with the Tt _status field containing TT_FATILED.

TT_QUEUE = 1
Queue the message until a process of the proper ptype re-
ceives the message.

TT_START = 2
Attempt to start a process of the proper ptype if none is
running.

Tt_state values indicate a message’s delivery status. Pos-
sible values and their meanings are:

TT_CREATED
Message has been created but not yet sent.
Only the sender of a message will see a message in this state.

TT_SENT
Message has been sent but not yet handled.

TT_HANDLED
Message has been handled, return values are valid.

TT_FAILED
Message could not be delivered to a handler.

TT_QUEUED
Message has been queued for later delivery.

TT_STARTED
Attempting to start a process to handle the message.

TT_REJECTED

Message has been rejected by a possible handler. This state
is seen only by the rejecting process. The ToolTalk service
changes the state back to TT_SENT before delivering the
message to another possible handler. If all possible handlers
have rejected the message, the ToolTalk service changes the
state to TT_FATILED before returning the message to the
sender.

Tt_filter_action is the return value from a query call-
back filter procedure. Possible values and meanings are:

TT_FILTER_CONTINUE
Continue the query, feed more values to the callback.

TT_FILTER_STOP
Stop the query, don’t look for any more values.

Chapter 1. ToolTalk® Overview

Tt callback

1.7.2
ToolTalk
Functions

tt_close

Returned Value

Related Functions
tt_default_file

Returned Value

1.7.2 ToolTalk Functions

These values are used to specify the action taken by the call-
back attached to messages or patterns. If no callback returns
TT_CALLBACK_PROCESSED, tt_message_receive()
will return the message. Possible values and their meanings
are:

TT CALLBACK_CONTINUE
If the callback returns TT_CALLBACK_CONTINUE, other
callbacks will be run.

TT_CALLBACK_PROCESSED

If the callback returns TT_CALLBACK_PROCESSED, no fur-
ther callbacks will be invoked for this event, and the message
will not be returned by tt_message_receive ().

Tt_status tt_close(void)

Closes the current default process identifier (procid).

Note - tt_close () should be the last ToolTalk function
your process calls.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_PROCID
tt_open()

char *tt_default_file(void)

Returns the current default file. Joining a file makes it the
default file.

char *

Pointer to a character string specifying the current default
file. If the pointer is NULL, no default is set.

83

Related Functions
tt_default_file_set

Arguments

Returned Value

tt_default_procid

Returned Value

84

Use tt_ptr_error (), which returns Tt_status, to
determine if the pointer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_PROCID
tt_file_join()

Tt_status tt_default_file_set (const
char *docid)

Sets the default file to the specified file.

const char *docid
Pointer to a character string specifying the file you want as
the default file.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

® TT_ERR_PROCID
° TT_ERR_FILE

char *tt_default_procid(void)

Retrieves the current default process identifier (procid) for
your process. The procid is used in the sender field of mes-
sages.

char *
Pointer to character string that uniquely identifies the cur-
rent default process.

Usett_ptr_error(),whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt_status values
are:

° TT_OK
° TT_ERR_NOMP

° TT_ERR_PROCID

Chapter 1. ToolTalk® Overview

tt_default_procid_

set

Arguments

Returned Value

Related Functions
tt_default_ptype

Returned Value

Related Functions

tt_default_ptype
set

1.7.2 ToolTalk Functions

Tt_status tt_default_procid_set (const

char*procid)

Sets the current default procid. The default procid is set by
tt_open (). Only processes that do multiple tt_open ()
calls and juggle multiple procids ever need to use this func-
tion.

const char *procid
Name of process you want to set up as the default process.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_PROCID
tt_open()

char *tt_default_ptype (void)

Retrieves the current default process type (ptype). Declaring
a ptype makes it the default ptype. The default ptype is used
in the sender ptype field of your message.

char *

Pointer to character string that uniquely identifies the cur-
rent default process type. If the pointer is NULL, no default
is set.

Usett_ptr_error (), whichreturnsTt_status,tode-
termine if the pointer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_PROCID
tt_ptype_declare()

Tt_status tt_default_ptype_set (const

char *ptid)

Sets the default process type (ptype) to the provided string.

85

Arguments

Returned Value

tt_default_session

Returned Value

Related Functions

tt_default_session_
set

86

const char *ptid
Use the character string that uniquely identifies the process
you wish to set up as the default process.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_PROCID

char *tt_default_session (void)

Retrieves the current default session identifier from the
ToolTalk service for the current default procid.

char *

Pointer to the unique identifier for the current session. If the

pointer is NULL, no default is set.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_PROCID
tt_default_procid()

Tt_status tt_default_session_set
(const char *sessid)

Sets the current default session identifier for the current de-
fault procid.

Note - The ToolTalk service uses the initial user session as
the default session and supports one session per procid. To
join other sessions, your program must first set the new ses-
sion as the default and then initialize and register. The calls

required must be in this order: tt_default_session_

set, tt_open, tt_£fd

Chapter 1. ToolTalk® Overview

Arguments

Returned Value

Related Functions

tt_error_int

Arguments

Returned Value

tt_error_ pointer

Arguments

Returned Value

tt_f£fd

1.7.2 ToolTalk Functions

const char *sessid
Pointer to the unique identifier for the session in which you
are interested.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_PROCID
° TT_ERR_SESSION
tt_open()
tt_£fd()

int tt_error_int (Tt_status ttrc)

Givena Tt_status code, returns an integer error object en-
coding the code.

Note - The integer error objects are negative integers, so
only use this when the valid integer values are non-nega-
tive.

Tt_status ttrc

Tt_status code you want to encode.
int

Encoded Tt_status code.

void *tt_error_pointer (Tt_status

ttrc)

Givena Tt_status code, returns a pointer to an error object
encoding the code.

Tt_status ttrc
Tt_status code you want to encode.

void *
Pointer to encoded Tt_status code.

int tt_fd(void)

Returns a file descriptor (fd) which is used to alert your pro-

87

Returned Value

Related Functions

tt_file copy

Arguments

Returned Value

88

gram that a message has arrived for the default procid in the
default session. File descriptors are either active or inactive.
When your file descriptor becomes active, you need to call
tt_message_receive.

Note - You must have a separate file descriptor for each pro-
cid. Each time you call t t _open, use tt_£fd to get an asso-
ciated file descriptor.

int

File descriptor for your current procid.
Usett_int_error(),whichreturns Tt_status,tode-

termine if the integer is valid. Possible Tt_status values

are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_PROCID

° TT_ERR_SESSION
tt_open()

tt_message_receive()

Tt_status tt_file_copy(const char
*oldfilepath, const char
*newfilepath)

Copies all the objects on the specified file to the new file. Any
objects already on the second file are not removed.

const char *oldfilepath
Pointer to the name of the file whose objects are to be cop-
ied.

const char *newfilepath
Pointer to the name of the file on which to create the copied
objects.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL

Chapter 1. ToolTalk® Overview

Related Functions

tt_file_destroy

Arguments

Returned Value

Related Functions

tt_file_join

1.7.2 ToolTalk Functions

°® TT_ERR_DBEXIST

° TT_ERR_FILE

° TT_ERR_NOMP

° TT_ERR_PATH

° TT_ERR_POINTER
tt_file_move()
tt_file_destroy ()

Tt_status tt_file_destroy(const char
*filepath)

Removes all the objects on the files and directories rooted at
filepath from the appropriate ToolTalk database. Call this
function when you unlink(2) a file or rmdir(2) a directory.

const char *filepath
Pointer to the pathname of the file to be removed.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_ACCESS

° TT_ERR_DBAVAIL

° TT_ERR_DBEXIST

° TT_ERR_FILE

° TT_ERR_NOMP

° TT_ERR_PATH

° TT_ERR_POINTER
tt_file_copy ()
tt_file_move ()
rmdir(2)
unlink (2)

Tt_status tt_file_join(const char
*filepath)

Informs the ToolTalk service that your process is interested

89

Arguments

Returned Value

tt_file _move

Arguments

Returned Value

90

in messages involving the file named by the provided string.
The ToolTalk service adds this file value to any currently reg-
istered patterns with scope TT_FILE. The named file be-
comes the default file.

const char *filepath
Pointer to the pathname of the file to be joined.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_PATH

Tt_status tt_file_move(const char
*oldfilepath,
const char *newfilepath)

Destroys all the objects on the files and directories rooted at
the new filepath, and then moves all the objects on the first
file to the second file.

If oldfilepath and newfilepath are in the same filesystem,
then tt_file_move() replaces oldfilepath with newfile-
path in the path associated with every object in that filesys-
tem. That is, it picks up all the objects in the directory tree
rooted at oldfilepath, and overlays them onto newfilepath. In
this mode, tt_file_move() is like the system call re-
name (2).

If oldfilepath and newfilepath are on different file systems,
neither may be a directory.

const char *oldfilepath
The name of the file or directory whose objects are to be
moved.

const char *newfilepath
The name of the file or directory to which the objects are to
be moved.

Tt_status
The status of the operation. Possible values are:

° TT_OK

Chapter 1. ToolTalk® Overview

Related Functions

tt_file_objects_
query

Arguments

1.7.2 ToolTalk Functions

° TT_ERR_ACCESS

° TT_ERR_DBAVAIL

° TT_ERR_DBEXIST

° TT_ERR_FILE

° TT_ERR_NOMP

° TT_ERR_PATH

° TT ERR_POINTER
tt_file_copy ()
tt_file_destroy ()
rename (2)

Tt_status tt_file objects_query (const
char *filepath, Tt_filter_
function filter, void *con-
text, void *accumulator)

Instructs the ToolTalk service to find all the objects in the
named file and pass back the objids to the filter function you
created. The context pointer and accumulator pointer you
initially specify will also be passed to your filter function.

As the ToolTalk service finds each object, it calls your filter
function, passing the objid of the object and the two applica-
tion-supplied pointers. Your filter function performs its com-
putation, and returns a Tt_filter_action value to tell
the query function whether to continue or to stop. Tt_fil-
ter action values are:

e TT FILTER_CONTINUE
e TT _FILTER_STOP

const char *filepath
File name.

Tt_filter_ function filter

Your filter function. Tt_filter_function is a typedef
“Tt_filter_action (*) (char *objid, void
*context, void *accumulator)”.

void *context

A pointer to any information your filter needs to execute. The
ToolTalk service does not interpret this argument. It passes it
straight through to your filter function.

91

Returned Value

tt_file quit

Arguments

Returned Value

tt_free

92

void *accumulator

A pointer to a place for your filter to store the results of the
query and filter operations. The ToolTalk service does not in-
terpret this argument, but passes it straight through to your
filter function.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_PATH

° TT_WRN_STOPPED

Tt_status tt_file_quit(const char
*filepath)

Informs the ToolTalk service that your process is no longer
interested in messages involving the file named by the pro-
vided string. The ToolTalk service removes this file value
from any currently registered patterns with scope TT_FILE.
The default file is nulled.

const char *filepath
File name.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_PATH

void tt_free(caddr_t p)

Frees this storage from the ToolTalk API allocation stack.

You may find t t _free more convenient than using tt_
mark and tt_release if your application is in a loop ob-
taining strings from the ToolTalk service and processing each
in turn.

Chapter 1. ToolTalk® Overview

Arguments

Related Functions
tt_initial session

Returned Value

tt_int_error

Arguments

Returned Value

tt_is_err

Arguments

Returned Value

1.7.2 ToolTalk Functions

caddr_t p
Storage in the ToolTalk API allocation stack that had been
given to your application.

tt_malloc ()

char *tt_initial_session(void)

Returns the session in which the process was created. This is
either a process tree session or the X session associated with
the display named in the DISPLAY environment variable.

char *

Identifier for the current ToolTalk session.
Usett_ptr_error (), whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK
° TT_ERR_NOMP

Tt_status tt_int_error(int return_val)

Given an integer, returns TT_OK if the integer is not an error
object or the encoded Tt_status value if the integer is an
error object.

int return_val
Integer returned by a ToolTalk function.

Tt_status
The status of the operation. Possible values are:
° TT_OK
° TT_xxX
int tt_is_err(Tt_status s)

A macro that tells you if the Tt _status enum you provided
is a warning or an error. tt_is_err () expands to (TT_
WRN_LAST < (p)).

Tt _status s

The Tt _status code you want to check.

int

If you receive 1, the Tt_status enum is an error. If you

receive 0, the Tt_status enum is either a warning or TT_
OK.

93

tt_malloc

Arguments

Returned Value

Related Functions
tt_mark

Returned Value

Related Functions
tt_message_address

Arguments

Returned Value

94

caddr_t tt_malloc(size_t s)

Allocates storage on the ToolTalk API allocation stack.

This capability is provided so that your application-pro-
vided callback routines can take advantage of the allocation
stack. For example, a query filter function might allocate stor-
age to hold a result.

size_t s
The amount of storage you want in bytes.

caddr_t
Storage in the ToolTalk API allocation stack given to your ap-
plication. If NULL is returned, no storage is available.

tt_free()

int tt_mark (void)

Marks a storage position in the ToolTalk API allocation stack.
Your application typically does this at the beginning of a pro-
cedure.

int
Integer that marks your application’s storage position in the
ToolTalk API allocation stack.

tt_release()

Tt_address tt_message_address (Tt_mes-
sage m)

Retrieves the address attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_address
Specifies which message attributes form the address of this
message. Possible values are:

° TT_PROCEDURE
° TT_OBJECT
° TT_HANDLER

° TT OTYPE

Chapter 1. ToolTalk® Overview

tt_message_address_

set

Arguments

Returned Value

tt_message_arg_add

1.7.2 ToolTalk Functions

Use tt_int_error (), which returns Tt_status, to
determine if the Tt_address integer is valid. Possible Tt _
status values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_address_set (Tt_
message m, Tt_address a)

Sets the address attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_address a
Specifies which message attributes form the address to which
the message will be delivered. Possible values are:

° TT_PROCEDURE
° TT_OBJECT

° TT_HANDLER

° TT_OTYPE

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_arg_add (Tt_mes-
sage m, Tt_mode n, const
char *vtype, const char
*value)

Adds a new argument to a message object. Add all argu-
ments before the message is sent.

Note - Do not add arguments to a reply. Only change exist-
ing argument values with modes of TT_OUT or TT_INOUT.

95

Arguments

Returned Value

Related Functions

tt_message_arg_bval

Arguments

96

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_mode n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

° TT_IN
° TT_OUT
° TT_INOUT

const char *vtype
Type of the value.

const char *value

Contents for the message argument attribute. Use NULL for
values of mode TT_OUT, or if the value will be filled in later
with tt_message_arg_val_set, tt_message_barg_
val_set,or tt_message_iarg_val_set

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_MODE

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_message_arg_val_set ()
tt_message_barg_add()
tt_message_iarg_add()

Tt_status tt_message_arg_bval (Tt_mes-
sage m, int n, unsigned char
**yalue, int *len)

Retrieves the value of the n-th message argument as a byte
string.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Chapter 1. ToolTalk® Overview

Returned Value

tt_message_arg_
bval_set

Arguments

1.7.2 ToolTalk Functions

int n
Number of the argument you want to retrieve. The first ar-
gument is 0.

unsigned char **value

Address of a character pointer that the ToolTalk service
should aim toward a string containing the contents of the ar-
gument.

int *len
Address of an integer that the ToolTalk service should set to
the length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_POINTER

unsigned char **value
Address of a character pointer that the ToolTalk service
aimed at a string containing the contents of the argument.

int *len
Address of an integer that the ToolTalk service set to the
length of the value in bytes.

Tt_status tt_message_arg_bval_set (Tt_
message m, int n, const un-
signed char *value, int len)

Sets the value and the type of the n-th message argument as
a byte string. You (the sender) can use tt_message_arg_
bval_set to fill in opaque data.

Also, this changes the value of the n-th message argument
to a byte string. Used by the handler before replying to the
message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

int n

Number of the argument you want to set. The first argument
is 0.

97

Returned Value

Related Functions

tt_message_arg ival

Arguments

Returned Value

98

const unsigned char *value
Byte string with the contents for the message argument.

int len
Length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_POINTER
tt_message_barg_add()
tt_message_arg_val_set ()
tt_message_iarg_val_set ()

Tt_status tt_message_arg_ ival (Tt_mes-
sage m, int n, int *value)

Retrieves the value of the n-th message argument as an inte-
ger.

Tt_message m

Opaque handle for the message involved in this opera-
tion.

int n
Number of the argument you want to retrieve. The first ar-
gument is 0.

int *value
Pointer to an integer where the ToolTalk service should store
the contents of the argument.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_NUM

° TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

tt_message_arg
ival set

Arguments

Returned Value

Related Functions

tt_message_arg_mode

Arguments

1.7.2 ToolTalk Functions

int value
Value of the n-th argument.

Tt_status tt_message_arg_ival_set (Tt_
message m, int n, int value)

Fills in the n-th message argument with an integer value.
Also, changes the value of the n-th message argument to
an integer.

Tt_message m

Opaque handle for the message involved in this opera-
tion.

int n
Number of the argument you want to set. The first argu-
ment is 0.

int value
Contents (in integer form) for the message argument.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_POINTER
tt_message_arg_ival_add()
tt_message_arg_val_set ()
tt_message_barg_val_set ()

Tt_mode tt_message_arg_mode (Tt_mes-
sage m, int n)

Returns the mode of the n-th message argument.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

int n
Number of the argument in which you are interested. The
first argument is 0.

99

Returned Value

tt_message_arg_type

Arguments

Returned Value

tt_message_arg val

100

Tt_mode
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

° TT_IN
° TT_OUT
° TT_INOUT

Usett_int_error(),whichreturns Tt_status, tode-
termine if the Tt_mode integer is valid. Possible Tt _status
values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_POINTER

char *tt_message_arg_type (Tt_mes-
sage m, int n)

Retrieves the type of the n-th message argument.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

int n
Number of the argument in which you are interested. The
first argument is 0.

char *
Type of the n-th message argument.

Usett_ptr_error (),whichreturns Tt_status, tode-
termine if the pointer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_POINTER

char *£f{_message_arg_val (Tt_mes-
sage m, int n)

Returns a pointer to the value (assuming it is a character
string) of the n-th message argument.

Chapter 1. ToolTalk® Overview

Arguments

Returned Value

tt_message_arg val_
set

Arguments

Returned Value

1.7.2 ToolTalk Functions

Tt_message m
Opaque handle for the message involved in this opera-
tion.

int n
Number of the argument in which you are interested. The
first argument is 0.

char *

Contents for the message argument.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt _status values

are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_POINTER

Tt_status tt_message_arg_val_set (Tt_
message m, int n,
const char *value)

Changes the value of the n-th message argument. Generally
used by the handler before replying to the message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

int n
Number of the argument you want to change. The first argu-
ment is 0.

const char *value
Contents for the message argument.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_NUM

° TT_ERR_POINTER

101

tt_message_args_
count

Arguments

Returned Value

tt_message_barg add

Arguments

102

int tt_message_args_count (Tt_
message m)

Returns the number of arguments in the message.

Tt_message m

Opaque handle for the message involved in this opera-

tion.

int

Total number of arguments in the message.
Usett_int_error (), whichreturns Tt _status,tode-

termine if the integer is valid. Possible Tt_status values
are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_barg_add(Tt_mes-
sage m, Tt_mode n, constchar
*vtype, const unsigned char
*value, int len)

Adds an argument to a pattern that may have a value con-
taining imbedded nulls.

Note - Do not add arguments to a reply. Only change exist-
ing argument values with modes of TT_OUT or TT_INOUT.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_mode n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

° TT_IN
° TT_OUT
° TT_INOUT

const char *vtype
Type of the value.

Chapter 1. ToolTalk® Overview

Returned Value

Related Functions

tt_message_callback_
add

1.7.2 ToolTalk Functions

The ToolTalk service treats the value as an opaque byte
string. To pass structured data, your application and the re-
ceiving application must encode and decode these opaque
byte strings. The most common way of doing this is to use
XDR.

const unsigned char *value
Value that the ToolTalk service should fill in.

int len
Length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_message_barg_val_set ()
tt_message_arg_add()

tt_message_iarg_add()

Tt_status tt_message_callback_add(Tt_
message m, Tt_message_call-
back f)

Registers a callback function that will be automatically in-
voked by tt_message_receive whenever a reply or
other state-change to this message is returned.

Tt_callback_action is an enum containing the val-
ues TT_CALLBACK_CONTINUE andTT_CALLBACK_PRO-
CESSED. If the callback returns TT_CALLBACK_
PROCESSED, no further callbacks will be invoked for this
event, and the message will not be returned by tt_mes-
sage_receive. If the callback returns TT_CALLBACK_
CONTINUE, other callbacks will be run, and if no callback re-
turns TT_CALLBACK_PROCESSED, tt_message_re-
ceive will return the message.

This behavior can be used to create wrappers for ToolTalk
messages. A library routine can construct a request, attach a
callback to the message, send the message, and process the
reply in the callback. By having the callback return TT_
CALLBACK_PROCESSED, the message reply will not be re-
turned to the main program, so the message and reply are

103

Arguments

Returned Value

tt_message_class

Arguments

Returned Value

104

completely hidden. Note that these callbacks are invoked
from tt_message_receive, so it’s still necessary for pro-
grams to arrange for tt_message_receive to be called
when the file descriptor returned by t t_fd becomes active.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_message_callback f

Tt_message_callbackis a type definition for a pointer to
a function declared like: Tt_callback_action
func (Tt_message m, Tt_pattern p). The callback
is passed the message in question and the pattern that
matched it. The pattern handle will be null if the message
didn’t match a dynamic pattern (this is usually the case
for message callbacks).

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_class tt_message_class (Tt_message
m)

Retrieves the class attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_class

Indicates whether or not the sender wanted an action to
take place after the message is received. Possible values
are:

° TT_NOTICE

° TT_REQUEST
Use tt_int_error (), which returns Tt_status,
to determine if the Tt _class integer is valid. Possible
Tt_status values are:

° TT_OK

Chapter 1. ToolTalk® Overview

tt_message_class_set

Arguments

Returned Value

tt_message_create

Returned Value

1.7.2 ToolTalk Functions

° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_class_set (Tt_mes-
sage m, Tt_class c)

Sets the class attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_class c
Indicates whether or not you want an action to take place
after the message is received. Possible values are:

® TT_NOTICE
° TT_REQUEST

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT ERR_POINTER

Tt_message tt_message_create (void)

Creates a new message object. The ToolTalk service returns a
message handle that’s really an opaque pointer to a ToolTalk
structure. You do not manipulate the structure directly.

Tt_message
The unique opaque handle that identifies your message ob-

ject.

If ToolTalk is unable to create a message when requested,
an invalid handle will be returned to you. When you attempt
to use this handle, the ToolTalk service will report an error.
Use tt_pointer_error to determine why the ToolTalk
service was not able to create the message.

Usett_ptr_error (), whichreturns Tt_status, tode-
termine if the pointer is valid. Possible Tt_status values
are:

° TT_OK

° TT_ERR_NOMP

105

Related Functions

tt_message_create_
super

Arguments

Returned Value

Related Functions

tt_message_destroy

106

° TT_ERR_NUM

° TT_ERR_POINTER
tt_message_send ()
tt_message_destroy ()

Tt_message tt_message_create_super{Tt_
message m)

Re-addresses the specified message to the parent otype of the
otype or object listed in the message. Returns the re-ad-
dressed message so you can fill in additional message at-
tributes and send the message.

Tt_message m

Opaque handle for the message involved in this opera-
tion.

Tt_message

Opaque unique handle for the re-addressed message.
Usett_ptr_error (), whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK

° TT_ERR_ADDRESS

° TT_ERR_NOMP

° TT_ERR_OBJID

° TT_ERR_OTYPE

° TT_ERR_POINTER
tt_message_send()
tt_message_destroy ()

Tt_status tt_message_destroy (Tt_mes-
sage m)

Destroys the message. Destroying a message has no effect on
the delivery of a message you have already sent.

If you sent a request and are expecting a reply with return
values, destroy a message after you have received the reply.
If you sent a notice, you can destroy the message after you
send it.

Chapter 1. ToolTalk® Overview

Arguments

Returned Value

Related Functions

tt_message_disposi-
tion

Arguments

Returned Value

1.7.2 ToolTalk Functions

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_message_create ()
tt_message_create_super ()

Tt_disposition tt_message_disposition(Tt_
message m)

Retrieves the disposition attribute from the specified mes-
sage.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_disposition

Indicates whether the receiver should be started to receive
the message or if the message should be queued until the
receiving process is started at a later time. Possible values
are:

° TT QUEUE
° 7T START
° TT QUEUE+TT_START

Usett_int_error (), whichreturns Tt_status,tode-
termine if the Tt_disposition integer is valid. Possible Tt _
status values are:

° TT_OK
° TT_ERR_NOMP

° TT_ERR_POINTER

107

tt_message_disposi-
tion_set

Arguments

Returned Value

tt_message_fail

108

Tt_status tt_message_disposition_set
(Tt_message m, Tt_disposi-
tion r)

Sets the disposition attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_disposition r

Indicates whether the receiver should be started to receive
the message or if the message should be queued until the
receiving process is started at a later time. Possible values
are:

° TT_QUEUE
° TT_START
° TT_QUEUE+TT_START

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_fail (Tt_message
m)

Informs the ToolTalk service that your process can not handle
the request you just received and that the message should not
be offered to other processes of the same ptype as yours. The
ToolTalk service will send the message back to the sender
with state TT_FAILED.

To help the requestor distinguish this case from the case
where a message failed because no matching handler could
be found, place an explanatory message code in the status
attribute of the message with tt_message_status_set
and tt_message_status_string_set before calling
tt_message_fail.

Note - The status value must be greater than 2047 (TT_
ERR_LAST) to avoid confusion with the ToolTalk service
status values.

Chapter 1. ToolTalk® Overview

Arguments

Returned Value

Related Functions

tt_message_file

Arguments

Returned Value

tt_message_file_set

Arguments

1.7.2 ToolTalk Functions

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NOTHANDLER

° TT_ERR_POINTER
tt_message_status_set ()
tt_message_status_string set ()

char *tt_message_file(Tt_message
m)

Retrieves the file attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

char *

File attribute of the specified message.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT OK
° TT ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_file_set (Tt_mes-
sage m,
const char *file)

Sets the file attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

const char *file
File name involved in this operation.

109

Returned Value

tt_message_gid

Arguments
Returned Value

Related Functions
tt_message_handler

Arguments

Returned Value

110

Tt_status
The status of the operation. Possible values are:

° TT_OK

°© TT_ERR_FILE

° TT_ERR_NOMP

° TT_ERR_POINTER

gid_t tt_message_gid(Tt_message m)

Retrieves the group ID attribute from the specified message.

The ToolTalk service automatically sets the group ID of a
message with the group ID of the process that created the
message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

gid_t
The group ID of the message. If the “nobody” group (65534)
is returned, the message handle is not valid.

tt_message_uid()

char *tt_message_handler (Tt_mes-
sage m)

Retrieves the handler attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

char *
Character value that uniquely identifies the process that
should handle the message (Tt_state = TT_CREATED or TT_
SENT) or the process that did handle the message (Tt_state
=TT_SENT or TT_HANDLED).
Usett_ptr_error(),whichreturns Tt _status,tode-
termine if the pointer is valid. Possible Tt_status values
are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

tt_message_handler_
ptype

Arguments

Returned Value

tt_message_handler
ptype_set

Arguments

Returned Value

tt_message_handler
set

1.7.2 ToolTalk Functions

char *tt_message_handler_ptype
(Tt_message m)

Retrieves the handler ptype attribute from the specified mes-
sage.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

char *

Type of process that should handle this message.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK
° TT_ERR_NOMP

° TT_ERR_POINTER

Tt_status tt_message_handler_ptype_
set (Tt_message m, const char
*ptid)

Sets the handler process type (ptype) attribute for the speci-
fied message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

const char *ptid
Type of process that should or did handle this message.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_handler_set (Tt_
message m, const char *pro-
cid)

Sets the handler attribute for the specified message.

111

Arguments

Returned Value

tt_message_iarg_add

Arguments

112

Tt_message m
Opaque handle for the message involved in this opera-
tion.

const char *procid
Character value that uniquely identifies the process you
want to handle the message.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_iarg_add(Tt_mes-
sage m, Tt_mode n, constchar
*vtype, int value)

Adds a new argument to a message object and sets the value
to a given integer. Add all arguments before the message is
sent.

Note - Do not add arguments to a reply. Only change exist-
ing argument values with modes of TT_OUT or TT_INOUT.

Tt_message m

Opaque handle for the message involved in this opera-
tion.

Tt_mode n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

° TT_IN
° TT_OUT
¢ TT_INOUT

const char *vtype
Type of the value.

int value
Value to fill in.

Chapter 1. ToolTalk® Overview

Returned Value

Related Functions

tt_message_object

Arguments

Returned Value

tt_message_object_
set

Arguments

1.7.2 ToolTalk Functions

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_MODE

° TT_ERR_NOMP

° TT_ERR_POINTER

° TT_ERR_VTYPE
tt_message_arg_ival_set ()
tt_message_arg_add()
tt_message_barg_add()

char *tt_message_object (Tt_mes-
sage m)

Retrieves the object attribute from the specified message.

Tt_message m

Opaque handle for the message involved in this opera-
tion.

char *

Object involved in this message.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_OBJID

° TT_ERR_POINTER

Tt_status tt_message_object_set (Tt_
message m, const char *objid)

Sets the object attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

const char *objid
Object involved in this message.

113

Returned Value

tt_message_op

Arguments

Returned Value

tt_message_op_set

Arguments

Returned Value

114

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

char *tt_message_op (Tt_message m)

Retrieves the operation (op) attribute from the specified mes-
sage.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

char *

Operation the receiver should perform.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_op_set (Tt_mes-
sage m, const char *opname)

Sets the operation (op) attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

const char *opname
Operation the receiver should perform.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP

° TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

tt_message_opnum

Arguments

Returned Value

tt_message_otype

Arguments

Returned Value

tt_message_otype_
set

1.7.2 ToolTalk Functions

int tt_message_opnum(Tt_message
m)

Retrieves the operation number (opnum) attribute from the
specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.
int
The number of the operation (opnum) involved in this mes-
sage.

Usett_int_error(),whichreturns Tt_status, tode-
termine if the Tt_disposition integer is valid. Possible Tt _
status values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

char *tt_message_otype (Tt_mes-
sage m)

Retrieves the object type (otype) attribute from the specified
message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

char *

Type of the object involved in this message.
Usett_ptr_error (),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_otype_set (Tt_mes-
sage m, const char *otype)

Sets the object type (otype) attribute for the specified mes-
sage.

115

Arguments

Returned Value

tt_message_pattern

Arguments

Returned Value

tt_message_receive

116

Tt_message m
Opaque handle for the message involved in this opera-
tion.

const char *otype
Type of the object involved in this message.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_OTYPE

° TT_ERR_POINTER

Tt_pattern tt_message_pattern(Tt_mes-
sage m)

Retrieves the pattern attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_pattern

Opaque handle for a message pattern.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the handle is valid. Possible Tt_status values

are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_message tt_message_receive(void)

Returns a handle for the next message waiting to be delivered
to your process. tt_message_receive() also runs any
message or pattern callbacks applicable to this message.
Check Tt_status with tt_message_status () to see if the
return value is TT_WRN_STARTING. If it is, the ToolTalk ser-
vice started your application to deliver this message. You
must reply to this message.

Chapter 1. ToolTalk® Overview

Returned Value

tt_message_reject

Arguments

Returned Value

tt_message_reply

1.7.2 ToolTalk Functions

Note - If the returned handle is 0, no message is available.
This can occur if a message or pattern callback processes the
message. It can also happen if the time between the tt_
£d() file descriptor becoming active and the tt_mes-
sage_receive () callis toolong. The ToolTalk service will
time out and offer the message to another process.

Tt_message
Handle for the message object.

Usett_ptr_error (), whichreturns Tt_status,tode-
termine if the handle is valid. Possible Tt_status values
are:

° TT_OK
° TT_ERR_NOMP

Tt_status tt_message_reject (Tt_mes-
sage m)

Informs the ToolTalk service that your process can not handle
this message. The ToolTalk service will try other handlers.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NOTHANDLER
° TT_ERR_POINTER

Tt_status tt_message_reply (Tt_message
m)

Informs the ToolTalk service that your process has finished
handling the message, and all return values (any arguments
with the TT_OUT or TT_OUTIN mode) have been filled in.
The ToolTalk service will send the message back to the sender
and fill in the state attribute with TT_HANDLED.

117

Arguments

Returned Value

tt_message_scope

Arguments

Returned Value

tt_message_scope_
set

118

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NOTHANDLER
° TT_ERR_POINTER

° TT_ERR_PROCID

Tt_scope tt_message_scope (Tt_message
m)

Retrieves the scope attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_scope
Identifies the set of processes eligible to receive the message.
Possible values are:

° TT_SESSION

° TT_FILE

° TT_BOTH

° TT_FILE_IN_SESSION

Usett_int_error (), whichreturns Tt_status,tode-
termine if the Tt _scope integer is valid. Possible Tt _status
values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_scope_set (Tt_mes-
sage m, Tt_scope s)

Sets the scope attribute for the specified message.

Chapter 1. ToolTalk® Overview

Arguments

Returned Value

tt_message_send

Arguments

Returned Value

1.7.2 ToolTalk Functions

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_scope s
Identifies the set of processes eligible to receive the message.
Possible values are:

° TT_SESSION

° TT_FILE

° TT_BOTH

° TT_FILE_IN_SESSION

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_send(Tt_message
m)

Sends the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_ADDRESS
° TT_ERR_CLASS

° TT_ERR_FILE

° TT_ERR_NOMP

° TT_ERR_OBJID

° TT_ERR_OTYPE

° TT_ERR_OVERFLOW

° TT_ERR_POINTER

119

tt_message_sender

Arguments

Returned Value

tt_message_sender_
ptype

Arguments

Returned Value

120

® TT_ERR_PROCID
°© TT_ERR_SESSION
° TT_WRN_STALE_OBJID

char *tt_message_sender (Tt_mes-
sage m)

Retrieves the sender attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

char *
Character value that uniquely identifies the process that
sent the message.

Usett_ptr_error (), whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt_status values
are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

char *tt_message_sender_ptype (Tt_
message m)

Retrieves the sender ptype attribute from the specified mes-
sage.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

char *
Process that sent this message.

Usett_ptr_error (), whichreturns Tt_status, tode-
termine if the pointer is valid. Possible Tt_status values
are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

tt_message_sender_
ptype_set

Arguments

Returned Value

tt_message_session

Arguments

Returned Value

tt_message_session_
set

1.7.2 ToolTalk Functions

Tt_status tt_message_sender_ptype_
set (Tt_message m, const char
*ptid)

Sets the sender ptype attribute for the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

const char *ptid
Type of process that is sending this message.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

char *tt_message_session(Tt_mes-
sage m)

Retrieves the session attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

char *

Identifier of the session to which this message applies.
Usett_ptr_error (),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt _status values

are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_message_session_set (Tt_
message m, const char *ses-
sid)

Sets the session attribute for the specified message.

121

Arguments

Returned Value

tt_message_state

Arguments

Returned Value

122

Tt_message m
Opaque handle for the message involved in this opera-
tion.

const char *sessid
Identifier of the session in which you are interested.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_state tt_message_state (Tt_message
m)

Retrieves the state attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

Tt_state
Indicates a message’s current delivery state. Possible values
are:

° TT_CREATED
° TT_SENT

° TT_HANDLED
° TT_FAILED

° TT_QUEUED

° TT_STARTED
° TT_REJECTED

Usett_int_error (),whichreturns Tt_status,tode-
termine if the Tt _state integer is valid. Possible Tt _status
values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

tt_message_status

Arguments

Returned Value

Related Functions

tt_message_status_
set

Arguments

Returned Value

1.7.2 ToolTalk Functions

int tt_message_status (Tt_mes-
sage m)

Retrieves the status attribute from the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

int
An integer that describes the status stored in the status at-
tribute of this message.

Usett_int_error (),whichreturns Tt_status,tode-

termine if the integer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_message_status_string()

Tt_status tt_message_status_set (Tt_
message m,
int status)

Sets the status attribute for the specified message.

Note - The status value must be greater than 2047 (TT_
ERR_LAST) to avoid confusion with the ToolTalk service
status values.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

int status
Status to be stored in this message.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

123

tt_message_status_
string

Arguments

Returned Value

Related Functions

tt_message_status_
string set

Arguments

Returned Value

Related Functions
tt_message_uid

124

char *tt_message_status_
string (Tt_message m)

Retrieves the character string stored with the status attribute
for the specified message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

char *

Status string stored in this message.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_message_status()

Tt_status tt_message_status_string
set (Tt_message m, const char
*status_str)

Sets a character string with the status attribute for the speci-
fied message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

const char *status_str
Status string stored in this message.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_message_status_set ()

uld_t tt_message_uid(Tt_message m)

Retrieves the user ID attribute from the specified message.

Chapter 1. ToolTalk® Overview

Arguments
Returned Value

Related Functions
tt_message_user

Arguments

Returned Value

tt_message_user_
set

1.7.2 ToolTalk Functions

The ToolTalk service automatically sets the user ID of a
message with the user ID of the process that created the mes-
sage.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

uid_t
The user ID of the message, or the “nobody” user (65534) if
the message handle is not valid.

tt_message_gid()

void *tt_message_user (Tt_message
m, int key)

Retrieves the user information stored in data cells associated
with the specified message object you created. Since the user
data is part of the message object (the storage buffer in your
application), not the actual message, you can only retrieve
user information that you placed on the message.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

int key
User data cell in which you are interested. It must be unique
over all user data cells for this message.

void *

A piece of arbitrary user data that is one word in size.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK
° TT_ERR_NOMP

° TT_ERR_POINTER

Tt_status tt_message_user_set (Tt_mes-
sage m, int key,
void *v)

Stores user information in data cells associated with the spec-
ified message object.

125

Arguments

Returned Value

Related Functions
tt_objid_equal

Arguments

Returned Value

126

Note that the user data is part of the message object (the
storage buffer in your application), not the actual message.
Data stored by the sender in user data cells is not seen by any
handlers or observers. Use arguments for data that handlers
or observers need to see.

Tt_message m
Opaque handle for the message involved in this opera-
tion.

int key
User data cell in which you are interested.

void *v
A piece of arbitrary user data that is one word in size.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER

° TT_ERR_PROCID
tt_message_arg_add()

int tt_objid_equal (const char
*objidl, const char *ob3jid2)

Tests to see if two objids are equal. tt_objid_equal () is
better than st rcmp for the purpose since it returns “1” even
in the case where one objid is a forwarding pointer for the
other.

const char *objidl
Identifier of one of the objects involved in this operation.

const char *objid2
Identifier of the other object involved in this operation.

int
Integer indicating whether or not the objids are equal. Possi-
ble values are:

°0 - no

° 1 - yes

Usett_int_error (), whichreturns Tt_status,tode-

Chapter 1. ToolTalk® Overview

tt_objid_objkey

Arguments

Returned Value

tt_onotice_create

Arguments

Returned Value

1.7.2 ToolTalk Functions

termine if the integer is valid. Possible Tt _status values
are:

° TT_OK
° TT_ERR_NOMP
°® TT_ERR_OBJID

char *tt_objid_objkey (const char
*objid)

Returns the “unique key” portion of a objid.

const char *objid
Identifier of the object involved in this operation.

char *
Unique key of the objid. No two objids have the same
unique key.

Usett_ptr_error(),whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt_status values
are:

° TT_OK
° TT_ERR_OBJID

Tt_message tt_onotice_create(const char
*objid, const char *op)

Creates a message with:

¢ Tt_address = TT_OBJECT
¢ Tt_class = TT_NOTICE

The handle for the created message is returned so you can
add arguments, other attributes, and send the message.

const char *objid
Identifier of the desired object.

const char *op
Operation to be performed by the receiver.

Tt_message

The unique handle that identifies your message.
Usett_ptr_error (),whichreturns Tt_status,tode-

termine if the handle is valid. Possible Tt_status values

are:

127

tt_open

Returned Value

Related Functions

tt_orequest_create

Arguments

Returned Value

128

° TT_OK
° TT_ERR_NOMP
¢ TT_ERR_PROCID

char *tt_open(void)

Returns the process identifier (procid) for the calling process,
and sets this procid as the default procid for the process. tt_
open () is typically the first ToolTalk function you call from
your process.

A process may call tt_open () more than once to obtain
more than one procid. Each procid has its own associated
tt_£fd() file descriptor, and can join another session. To
switch to another procid use tt_default_procid_
set ().

char *

Character value that uniquely identifies your process.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK

° TT_ERR_NOMP
tt_£fdy()
tt_default_procid_set ()

Tt_message tt_orequest_create(const
char *objid, const char *op)

Creates a message with:

e tt_ address = TT_OBJECT
e tt_class = TT_REQUEST

The handle for the created message is returned so you can
add arguments, other attributes, and send the message.

const char *objid
Identifier of the desired object.

const char *op
The operation to be performed by the receiver.

Tt_message
The unique handle that identifies your message.

Chapter 1. ToolTalk® Overview

tt_otype_base

Arguments

Returned Value

Related Functions

tt_otype derived

Arguments

1.7.2 ToolTalk Functions

Usett_ptr_error(),whichreturns Tt_status,tode-
termine if the handle is valid. Possible Tt_status values
are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_PROCID

char *tt_otype_base(const char
*otype)

Returns the base otype that the given otype is derived from,
or NULL if the given otype is not derived.

char *otype
Object type involved in this operation.

char *
Name of the base otype, or NULL if the given otype is not
derived.

Usett_ptr_error(),whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_OTYPE
tt_otype_is_derived()
tt_otype_derived()
tt_otype_deriveds_count ()
tt_spec_type ()
tt_message_otype()

char *tt_otype_derived{const char
*otype, int i)

Returns the i-th otype derived from the given otype.

const char *otype
Object type involved in this operation.

int 1
Zero-based index into the otypes derived from the given
otype.

129

Returned Value

Related Functions

tt_otype_deriveds_
count

Arguments

Returned Value

Related Functions

130

char *

Name of the i-th otype derived from the given otype.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_OTYPE
tt_otype_is_derived()
tt_otype_base ()
tt_otype_deriveds_count ()
tt_spec_type ()
tt_message_otype()

int tt_otype_deriveds_count
(const char *otype)

Returns the number of otypes derived from the given otype.

const char *otype
Object type involved in this operation.

int
The number of otypes derived from the given otype.
Usett_int_error (), whichreturns Tt _status,tode-

termine if the integer is valid. Possible Tt_status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_OTYPE
tt_otype_is_derived()
tt_otype_base()
tt_otype_derived()
tt_spec_type ()

tt_message_otype()

Chapter 1. ToolTalk® Overview

tt_otype_hsig arg
mode

Arguments

Returned Value

Related Functions

1.7.2 ToolTalk Functions

Tt_mode tt_otype_hsig arg_mode
(const char *otype,
int sig, int arg)

Returns the Tt_mode of the arg’th argument of the sig’th re-
quest signature of the given otype.

const char *otype

Object type involved in this operation.

int sig

Zero-based index into the request signatures of the speci-
fied otype.

int arg
Zero-based index into the arguments of the specified signa-
ture.

Tt_mode

The Tt_mode of the specified argument, which determines
who (sender or handler) writes and reads a message argu-
ment. Possible modes are:

° TT_IN
° TT_OUT
° TT_INOUT

Usett_int_error (),whichreturns Tt_status, tode-
termine if the integer is valid. Possible Tt_status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_OTYPE
tt_otype_hsig_arg_type ()
tt_otype_hsig_count ()
tt_otype_hsig_args_count ()

tt_otype_hsig_op()

131

tt_otype_hsig arg
type

Arguments

Returned Value

Related Functions

tt_otype hsig args_
count

Arguments

132

char *tt_otype_hsig_arg_type
(const char *otype, int sig,
int arg)

Returns the data type of the arg’th argument of the sig’th re-
quest signature of the given otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the request signatures of the speci-
fied otype.

int arg
Zero-based index into the arguments of the specified sig-
nature.

char *

Data type of the specified argument.
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt _status values

are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_OTYPE
tt_otype_hsig_arg_mode ()
tt_otype_hsig_count ()
tt_otype_hsig_args_count ()
tt_otype_hsig_op()

int tt_otype_hsig_args_count
(const char *otype, int sig)

Returns the number of arguments of the sig’th request signa-
ture of the given otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the request signatures of the specified
otype.

Chapter 1. ToolTalk® Overview

Returned Value

Related Functions

tt_otype_hsig count

Arguments

Returned Value

Related Functions

1.7.2 ToolTalk Functions

int
The number of arguments of the sig’th request signature of
the given otype.

Usett_int_error(),whichreturns Tt_status,tode-
termine if the integer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_OTYPE
tt_otype_hsig_arg_type()
tt_otype_hsig_arg_mode ()
tt_otype_hsig_count ()
tt_otype_hsig_op()

int tt_otype_hsig count (const
char *otype)

Returns the number of request signatures for the given otype.

const char *otype

Object type involved in this operation.

int

The number of request signatures for the given otype.
Usett_int_error (), whichreturns Tt_status,tode-

termine if the integer is valid. Possible Tt_status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_OTYPE
tt_otype_hsig_arg_type()
tt_otype_hsig_arg_mode ()
tt_otype_hsig_args_count ()

tt_otype_hsig_op()

133

tt_otype_hsig op

Arguments

Returned Value

Related Functions

tt_otype_is_derived

Arguments

Returned Value

134

char *tt_otype_hsig_op(const char
*otype, int sig)

Returns the op name of the sig’th request signature of the
give otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the request signatures of the given
otype.

char *

Operation attribute of the specified request signature.
Usett_ptr_error (), whichreturns Tt_status, tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_OTYPE
tt_otype_hsig_arg_type ()
tt_otype_hsig_arg_mode ()
tt_otype_hsig_args_count ()
tt_otype_hsig_count ()

int tt_otype_is_derived (const
char *derivedotype, const
char *baseotype)

Returns 1 if and only if derivedotype is derived directly or
indirectly from baseotype.

const char *derivedotype
The purportedly derived otype.

const char *baseotype

Candidate base otype.

int

Returns 1 if and only if derivedotype is derived directly or
indirectly from baseotype.

Chapter 1. ToolTalk® Overview

Related Functions

tt_otype_osig_arg
mode

Arguments

Returned Value

1.7.2 ToolTalk Functions

Usett_int_error(),whichreturns Tt_status,tode-
termine if the integer is valid. Possible Tt_status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_OTYPE
tt_otype_deriveds_count ()
tt_otype_base ()
tt_otype_derived()
tt_spec_type ()

tt_message_otype()

Tt_mode tt_otype_osig_arg _mode
(const char *otype, int sig,
int arg)

Returns the Tt_mode of the arg’th argument of the sig’th no-
tice signature of the given otype.

const char *otype

Object type involved in this operation.

int sig

Zero-based index into the notice signatures of the specified
otype.

int arg

Zero-based index into the arguments of the specified signa-
ture.

Tt_mode

The Tt_mode of the specified argument, which determines
who (sender or handler) writes and reads a message argu-
ment. Possible modes are:

° TT_IN
° TT_OUT
° TT_INOUT

Use tt_int_error (), which returns Tt_status, to de-
termine if the Tt mode value is valid. Possible Tt_status
values are:

135

Related Functions

tt_otype_osig arg
type

Arguments

Returned Value

Related Functions

136

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_OTYPE
tt_otype_osig_arg_type()
tt_otype_osig_count ()
tt_otype_osig_args_count ()

tt_otype_osig_op()

char *tt_otype_osig_arg_type
(const char *otype, int sig,
int arg)

Returns the data type of the arg’th argument of the sig’th no-
tice signature of the given otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the notice signatures of the specified
otype.

int arg
Zero-based index into the arguments of the specified signa-
ture.

char *
Data type of the specified argument.

Usett_ptr_error (), whichreturns Tt _status, tode-
termine if the pointer is valid. Possible Tt_status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_OTYPE
tt_otype_osig_arg_mode ()
tt_otype_osig_count ()
tt_otype_osig_args_count ()

ttmotype_osig_op ()

Chapter 1. ToolTalk® Overview

tt_otype_osig_args
count

Arguments

Returned Value

Related Functions

tt_otype_osig count

Arguments

Returned Value

1.7.2 ToolTalk Functions

int tt_otype_osig_args_count
(const char *otype, int sig)

Returns the number of arguments of the sig’th notice signa-
ture of the given otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the notice signatures of the specified
otype.
int
The number of arguments of the sig’th notice signature of the
given otype.

Usett_int_error(),whichreturns Tt_status,tode-
termine if the integer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_OTYPE
tt_otype_osig_arg_type()
tt_otype_osig_arg_mode ()
tt_otype_osig_count ()
tt_otype_osig_op ()

int tt_otype_osig_count (const
char *otype)

Returns the number of notice signatures for the given otype.

const char *otype

Object type involved in this operation.

int

The number of notice signatures for the given otype.
Usett_int_error(),whichreturns Tt_status,tode-

termine if the integer is valid. Possible Tt _status values
are:

° TT_OK

137

Related Functions

tt_otype_osig op

Arguments

Returned Value

Related Functions

tt_pattern address_
add

138

° TT_ERR_NOMP

° TT_ERR_OTYPE
tt_otype_osig_arg_type()
tt_otype_osig_arg_mode ()
tt_otype_osig_args_count ()
tt_otype_osig_op ()

char *tt_otype_osig op(const char
*otype, int sig)

Returns the op name of the sig’th notice signature of the give
otype.

const char *otype
Object type involved in this operation.

int sig
Zero-based index into the notice signatures of the given
otype.

char *

Operation attribute of the specified notice signature.
Usett_ptr_error (), whichreturns Tt_status, tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_OTYPE
tt_otype_osig_arg_type()
tt_otype_osig_arg_mode ()
tt_otype_osig_args_count ()
tt_otype_osig_count ()

Tt_status tt_pattern_address_add(Tt_
pattern p, Tt_address d)

Adds a value to the address field for the specified pattern.

Chapter 1. ToolTalk® Overview

Arguments

Returned Value

tt_pattern_arg add

Arguments

1.7.2 ToolTalk Functions

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

Tt_address d
Specifies which pattern attributes form the address that mes-
sages will be matched against. Possible values are:

° TT_PROCEDURE
° TT_OBJECT

° TT_HANDLER

° TT_OTYPE

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_pattern_arg_add(Tt_pat-
tern p, Tt_mode n, constchar
*vtype, const char *value)

Adds an argument to a pattern. Add pattern arguments be-
fore registering your pattern with the ToolTalk service.

Tt_pattern p
Opaque handle for the pattern involved in this operation.

Tt_mode n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

° TT_IN
° TT_OUT
° TT_INOUT

const char *vtype
Type of the value. Use ‘ALL’ to match without regard to ar-
gument value type.

const char *value
Value to fill in (must be an unsigned character string.) Use
NULL to indicate that any value matches.

139

Returned Value

Related Functions

tt_pattern barg add

Arguments

Returned Value

140

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_pattern_register ()
tt_pattern_barg_add()
tt_pattern_iarg_add()

Tt_status tt_pattern_barg_add(Tt_pat-
tern m, Tt_mode n, constchar
*vtype, const unsigned char
*value, int len)

Adds an argument with a value containing imbedded nulls
to a pattern.

Tt_pattern m
Opaque handle for the pattern involved in this operation.

Tt_mode n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

° TT_IN
° TT_OUT
° TT_INOUT

const char *vtype
Type of the value.

The ToolTalk service treats the value as an opaque byte
string. To pass structured data, your application and the re-
ceiving application must encode and decode these unique
values. The most common way of doing this is to use XDR.

const unsigned char *value
Value to be filled in. Use NULL to specify that any value
matches.

int len
Length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

Chapter 1. ToolTalk® Overview

Related Functions

tt_pattern_callback_
add

Arguments

Returned Value

1.7.2 ToolTalk Functions

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_pattern_register()
tt_pattern_arg add()
tt_pattern_iarg_add()

Tt_status tt_pattern_callback add(Tt_
pattern m,
Tt_message_callback f)

Registers a callback function that will be automatically in-
voked by tt_message_receive () whenever a message
matches the pattern.

Tt_callback_actionisan enumcontaining the values
TT_CALLBACK_CONTINUE and TT_CALLBACK_PRO-
CESSED. If the callback returns TT_CALLBACK_PRO-
CESSED, no further callbacks will be invoked for this event,
and the message will not be returned by tt_message_re-
ceive(); if the callback returns TT_CALLBACK_CON-
TINUE, other callbacks will be run, and if no callback returns
TT_CALLBACK_PROCESSED, tt_message_receive()
will return the message.

Tt_pattern m
Opaque handle for the pattern involved in this operation.

Tt_message_callback f

Tt_message_callback is a type definition for a pointer
toa function declared like: Tt_callback_action
func (Tt_message m,Tt_pattern p). The callback
is passed the message in question and the pattern that
matched it.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP

° TT_ERR_POINTER

141

Related Functions
tt_pattern_category

Arguments

Returned Value

Related Functions

tt_pattern_category_
set

Arguments

Returned Value

142

tt_pattern_register ()

Tt_category tt_pattern_category (Tt_pat-
tern p)

Returns the category value of the specified pattern.

Tt_pattern p
Opaque handle for a message pattern.

Tt_category
Indicates the receiver’s intent. Possible values are:

° TT_OBSERVE
° TT_HANDLE

Usett_int_error (), whichreturns Tt_status,tode-
termine if the Tt _category integer is valid. Possible Tt _sta-
tus values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_pattern_category_set ()

Tt_status tt_pattern_category_set (Tt_
pattern p, Tt_category c)

Fills in the category field for the specified pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

Tt_category c
Indicates the receiver’s intent. Possible values are:

° TT_OBSERVE
° TT_HANDLE

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_CATEGORY
° TT_ ERR_NOMP

% TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

Related Functions

tt_pattern_class_

add

Arguments

Returned Value

tt_pattern_create

Returned Value

1.7.2 ToolTalk Functions

tt_pattern_category ()

Tt_status tt_pattern_class_add(Tt_pat-
tern p, Tt_class c)

Adds a value to the class information for the specified pat-
tern. If the class is TT_REQUEST, the sender expects a reply
to the message. If the class is TT_NOTICE, the sender will not
expect a reply.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

Tt_class c
Indicates whether or not the sender wants the receiver to take
action after the message is received. Possible values are:

° TT_NOTICE
° TT_REQUEST

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_pattern tt_pattern_create(void)

Requests a new pattern object. After receiving the pattern ob-
ject, fill in the message pattern fields to indicate what type of
messages you want to receive and register this information
with the ToolTalk service.

Note - You can supply multiple values for each attribute
you add to a pattern (some attributes are set and only have
one value). The pattern attribute matches a message at-
tribute if any of the values in the pattern match the value in
the message. If no value is specified for an attribute, the
ToolTalk service assumes that you want any value to match.

Tt_pattern
Opaque handle for a message pattern. Use this handle in
future calls to identify the pattern object.

143

Related Functions
tt_pattern destroy

Arguments

Returned Value

Related Functions

tt_pattern_disposi-
tion_add

Arguments

144

Usett_ptr_error(),whichreturns Tt _status,tode-
termine if the pointer is valid. Possible Tt_status values
are:

° 7T _OK
° TT_ERR_NOMP
tt_pattern_register()

Tt_status tt_pattern_destroy (Tt_pat-
tern p)

Destroys a pattern object. Destroying a pattern object auto-
matically unregisters the pattern with the ToolTalk service.

Tt_pattern p
Aunique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

tt_pattern_register()

Tt_status tt_pattern_disposition_ad-
d(Tt_pattern p, Tt_disposi-
tion r)

Adds a value to the disposition field for the specified pattern.

Tt_pattern p
Aunique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

Tt_disposition r

Indicates whether the receiver should be started to receive
the message or if the message should be queued until the
receiving process is started at a later time. The message can
also be thrown away if the receiver is not started. Possible
values are:

° TT_DISCARD

° TT_QUEUE

Chapter 1. ToolTalk® Overview

Returned Value

tt_pattern file_add

Arguments

Returned Value

tt_pattern_iarg add

Arguments

1.7.2 ToolTalk Functions

° TT_START
¢ TT_QUEUE+TT_START

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_pattern_file_add(Tt_pat-
tern p,
const char *file)

Adds a value to the file field of the specified pattern.

Note — When you join a file, the ToolTalk service updates
the file field of your registered patterns.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after youissue tt_pattern_create().

const char *file
Name of the file in which you are interested.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_pattern_iarg_add(Tt_pat-
tern m, Tt_mode n,
const char *vtype, int value)

Adds a new argument to a pattern and sets the value to a
given integer. Add all arguments before the pattern is regis-
tered.

Tt_pattern m
Opaque handle for the pattern involved in this operation.

145

Returned Value

Related Functions

tt_pattern_object_
add

Arguments

Returned Value

146

Tt_mode n
Specifies who (sender, handler, observers) writes and reads
a message argument. Possible modes are:

¢ TT_IN
° TT_OUT
° TT_INOUT

const char *vtype
Type of the value.

int value
Value to fill in.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_MODE

° TT_ERR_NOMP

° TT_ERR_POINTER

° TT_ERR_VTYPE
tt_pattern_register ()

Tt_status tt_pattern_object_add(Tt_
pattern p, const char *objid)

Adds a value to the object field of the specified pattern.

Tt_pattern p
Aunique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

const char *objid
Identifier for the specified object. Objid’s are returned from
tt_spec_create() or tt_spec_move().

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

tt_pattern_op_add

Arguments

Returned Value

tt_pattern_otype_
add

Arguments

Returned Value

tt_pattern_register

1.7.2 ToolTalk Functions

Tt_status tt_pattern_op_add(Tt_pat-
tern p, const char *opname)

Adds a value to the operation field of the specified pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after youissue tt_pattern_create().

const char *opname
The name of the operation (op) your process can perform.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_pattern_otype_add(Tt_pat-
tern p, const char *otype)

Adds a value to the object type (otype) field for the specified
pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

const char *otype
The name of the object type your application manages.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_OTYPE

° TT_ERR_POINTER

Tt_status tt_pattern_register (Tt_pat-
tern p)

Registers your pattern with TT, so that your process will start
receiving messages that match the pattern. Once a pattern is
registered, no further changes can be made in the pattern.

147

Arguments

Returned Value

Related Functions
tt_pattern_scope_add

Arguments

Returned Value

148

Note - When you join a session or file, the ToolTalk service
updates the file and session field of your registered pat-
terns.

Tt_pattern p
Aunique handle for a message pattern. You receive this han-
dle after you issue tt _pattern_create().

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER

° TT_ERR_PROCID
tt_pattern_unregister()

Tt_status tt_pattern_scope_add(Tt_pat-
tern p,
Tt_scope s)

Adds a value to the scope field for the specified pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create ().

Tt_scope s
Specifies which process are eligible to receive the message.
Possible values are:

° TT_SESSION

° TT_FILE

° TT_BOTH

° TT_FILE_IN_SESSION

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

tt_pattern_sender_
add

Arguments

Returned Value

tt_pattern_sender_
ptype_add

Arguments

Returned Value

tt_pattern_session_
add

1.7.2 ToolTalk Functions

Tt_status tt_pattern_sender_add(Tt_
pattern p, const char *pro-
cid)

Adds a value to the sender field for the specified pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

const char *procid
Character value that uniquely identifies the process in which
you are interested.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP

° TT_ERR_POINTER

Tt_status tt_pattern_sender_ptype_ad-
d(Tt_pattern p, const char
*ptid)

Adds a value to the sender s process type (ptype) field for the
specified pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

const char *ptid
Use the character string that uniquely identifies the type of
process in which you are interested.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_pattern_session_add(Tt_
pattern p,
const char *sessid)

Adds.a value to the session field for the specified pattern.

149

Arguments

Returned Value

tt_pattern_state_
add

Arguments

Related Functions

150

Note — When you join a session, the ToolTalk service up-
dates the session field of your registered patterns.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

const char *sessid
Session in which you are interested.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_pattern_state_add(Tt_pat-
tern p, Tt_state s)

Adds a value to the state field for the specified pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

Tt_state s

Indicates a message’s current delivery state. Possible values
are:

° TT_CREATED
° TT_SENT

° TT_HANDLED
° TT_FAILED

° TT_QUEUED

° TT_STARTED
° TT_REJECTED

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Chapter 1. ToolTalk® Overview

tt_pattern_unregis-
ter

Arguments

Returned Value

Related Functions
tt_pattern user

Arguments

Returned Value

1.7.2 ToolTalk Functions

Tt_status tt_pattern_unregister (Tt_
pattern p)

Unregisters the specified pattern from the ToolTalk service.

Your process will stop receiving messages that match this
pattern.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_pattern_register()

void *tt_pattern_user (Tt_pattern
p, int key)

Returns the value in the indicated user data cell for the spec-
ified pattern object.

Every pattern object allows an arbitrary number of user
data cells, each one word (a void *) in size. The user data
cells are identified by integer keys. Your tool can use these in
any way you see fit, to associate arbitrary data with a pattern
object. Note that the user data is part of the pattern object (the
storage buffer in your application), not the actual pattern.
The content of user cells has no effect on pattern matching.

Tt_pattern p
Aunique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

int key

User data cell in which you are interested. Your application
assigns the keys to the user data cells which are part of the
pattern object with tt_pattern_user_set(). Values
must be unique over all data cells for this pattern.

void *
String containing a piece of arbitrary user data that is one
word in size.

151

Related Functions
tt_pattern_user_set

Arguments

Returned Value

Related Functions
tt_pnotice_create

152

Usett_ptr_error(),whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt_status values
are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_pattern_user_set ()

Tt_status tt_pattern_user_set (Tt_pat-
tern p, int key, void *v)

Stores information in the user data cells associated with the
specified pattern object.

Tt_pattern p
A unique handle for a message pattern. You receive this han-
dle after you issue tt_pattern_create().

int key
User data cell in which you are interested. Values must be
unique over all data cells for this pattern.

void *v
String containing a piece of arbitrary user data that is one
word in size.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_POINTER
tt_pattern_user ()

Tt_message tt_pnotice_create (Tt_scope
scope, const char *op)

Creates a message with:

¢ Tt_address = TT_PROCEDURE
¢ Tt _class = TT_NOTICE

The handle for the created message is returned so you can
add arguments, other attributes, and send the message.

Chapter 1. ToolTalk® Overview

Arguments

Returned Value

tt_pointer_ error

Arguments

1.7.2 ToolTalk Functions

Tt_scope scope

A portion of the message that helps determine which pro-
cesses are eligible to receive the message. A potential recipi-
ent could be joined to:

° TT_SESSION

° TT_FILE

° TT_BOTH

° TT_FILE_IN_SESSION

If the scope is TT_SESSION, the Session is set to the cur-
rent default session. If the scope is TT_FILE, the File is set to
the current default file. If the scope is BOTH or FILE_IN_
SESSION, both File and Session are set to the defaults.

const char *op
The operation to be performed by the receiver.

Tt_message
The unique handle that identifies your message.

If ToolTalk is unable to create a message when requested,
an invalid handle will be returned to you. When you attempt
to use this handle, the ToolTalk service will report an error.

Usett_ptr_error (), whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt _status values
are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_PROCID

Tt_status tt_pointer_error (void
*pointer)

Given an opaque pointer (Tt_message or Tt_pattern), or
character pointer (char *),returns TT_OK if the pointer is
valid or the encoded Tt_status value if the pointer is an
error object.

To avoid the annoyance of having to cast the opaque or
character pointer to void * inevery call,amacro tt_ptr_
error (p) is provided that expands to tt_pointer_er-
ror ((void *) (p)).

void *pointer
Opaque pointer or character pointer to be checked.

153

Returned Value

tt_prequest_create

Arguments

Returned Value

154

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_message tt_prequest_create (Tt_scope
scope, const char *op)

Creates a message with:

¢ Tt_address = TT_PROCEDURE
¢ Tt_class = TT_REQUEST

The handle for the created message is returned so you can
add arguments, other attributes, and send the message.

Tt_scope scope

A portion of the message that helps determine which pro-
cesses are eligible to receive the message. A potential recipi-
ent could be joined to:

° TT_SESSION

° TT_FILE

° TT_BOTH

° TT_FILE_IN_SESSION

If the scope is TT_SESSION, the Session is set to the cur-
rent default session. If the scope is TT_FILE, the File is set to
the current default file. If the scope is BOTH or FILE_IN_
SESSION, both File and Session are set to the defaults.

const char *op
The operation to be performed by the receiver.

Tt_message
The unique handle that identifies your message.

If ToolTalk is unable to create a message when requested,
an invalid handle will be returned to you. When you attempt
to use this handle, the ToolTalk service will report an error.

Usett_ptr_error (),whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt _status values
are:

° TT_OK

Chapter 1. ToolTalk® Overview

tt_ptr_error

Arguments

Returned Value

tt_ptype_declare

Arguments

Returned Value

tt_release

Arguments

1.7.2 ToolTalk Functions

° TT_ERR_NOMP
° TT_ERR_PROCID

Tt_status tt_ptr_error (pointer)

A macro that expands to tt_pointer_error ((void
*) (p)).tt_ptr_error () helps youavoid the annoyance
of having to cast the opaque or character pointer to void *
in every call.

pointer
Pointer to the Tt_status code.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_POINTER

Tt_status tt_ptype_declare(const char
*ptid)

Registers your process type (ptype) with the ToolTalk ser-
vice.

const char *ptid
Use the character string specified in your ptype that uniquely
identifies your process.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_NOMP
° TT_ERR_PTYPE

void tt_release(int mark)

Frees all storage allocated on the ToolTalk API allocation
stack since your tt_mark () call.

Your application typically calls this at the end of a proce-
dure to release all storage allocated within the procedure.

int mark
Integer that marks your application’s storage position in the
ToolTalk API allocation stack.

155

Related Functions
tt_session_bprop

Arguments

Returned Value

156

tt_mark()

Tt_status tt_session_bprop(const char
*sessid, const char *prop-
name, int i, unsigned char
**yvalue, int *length)

Obtains the i-th value (first value is number 0) of the named
property of the session identified by sessid. If there are i val-
ues or fewer, both returned value and returned length are
zeroed.

const char *sessid

The session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt_default_ses-
sion().

const char *propname
The name of the property from which you want to obtain
values.

int 1
The number of the item in the property list for which

you want to obtain the value. The list numbering begins
with 0.

unsigned char **value
Address of a character pointer that the ToolTalk service
should aim to a string containing the contents of the property.

int *len
Address of an integer that the ToolTalk service should set to
the length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_PROPNAME

° TT_ERR_SESSION

Chapter 1. ToolTalk® Overview

tt_session_bprop_
add

Arguments

Returned Value

tt_session_bprop_
set

1.7.2 ToolTulk Functions

unsigned char **value
Address of a character pointer that the ToolTalk service
aimed at a string containing the contents of the property.

int *len
Address of an integer that the ToolTalk service set to the
length of the value in bytes.

Tt_status tt_session_bprop_add(const
char *sessid,
const char *propname,
const unsigned char *value,
int length)

Adds a new byte-string value to the end of the list of values
for the named property of the session identified by sessid.

const char *sessid

Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt_default_ses-
sion().

const char *propname
The name of the property to which you want to add values.

const unsigned char *value
The value to add to the session property.

int length
The size of the value in bytes.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_PROPLEN
° TT_ERR_PROPNAME
° TT_ERR_SESSION

Tt_status tt_session_bprop_set (const
char *sessid, const char

157

Arguments

Returned Value

tt_session_join

Arguments

158

*propname, const unsigned
char *value, int length)

Replaces any current values stored under the named prop-
erty of the session identified by sessid with the given byte-
string value.

const char *sessid

Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt_default_ses-
sion ().

const char *propname
The name of the property whose value you want to replace.

const unsigned char *value
The value to which the session property is set. If value is
NULL, the property is removed entirely.

int length
The size of the value in bytes.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_PROPLEN
° TT_ERR_PROPNAME
° TT_ERR_SESSION

Tt_status tt_session_join(const char
*sessid)

Joins the session named by the provided string and makes it
the default session for your process.

const char *sessid

Name of the session you wish to join. Use the sessid value
the ToolTalk service returns after you issue tt_default_
session(), tt_X session(), or tt_initial_ses-
sion().

Chapter 1. ToolTalk® Overview

Returned Value

Related Functions
tt_session_prop

Arguments

Returned Value

1.7.2 ToolTalk Functions

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL

° TT_ERR_DBEXIST

° TT_ERR_NOMP

° TT_ERR_PATH
tt_default_session()

char *tt_session_prop(const char
*segsid, const char *prop-
name, 1int 1)

Returns the i-th value (first value is number 0) of the spec-
ified session property.

Note - If this value has embedded nulls, you have no way
to determine how long it is. Use tt_session_bprop ()
for values with embedded nulls.

const char *sessid

Name of the session you have joined. Use the sessid value
the ToolTalk service returns after you issue tt_default_
session().

const char *propname

The name of the property from which you want to retrieve a
value. The name must be less than 64 characters.

int 1

The number of the item in the property name list for

which you want to obtain the value. The list numbering
begins with 0.

char *
The value of the requested property. NULL is returned if there
are i values or fewer.

Usett_ptr_error (), whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt _status values
are:

° TT_OK

159

tt_session_prop_add

Arguments

Returned Value

tt_session_prop_
count

160

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_PROPNAME
° TT_ERR_SESSION

Tt_status tt_session_prop_add(const

char *sessid, const char
*propname, const char *value)

Adds a new character-string value to the end of the list of
values for the property of the specified session.

const char *sessid

Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt_default_ses-
sion().

const char *propname
The name of the property to which you want to add a value.
The name must be less than 64 characters.

const char *value
The character string you want to add to the property name
list.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_PROPLEN
° TT_ERR_PROPNAME
° TT_ERR_SESSION

int tt_session_prop_count (const
char *sessid, const char
*propname)

Chapter 1. ToolTalk® Overview

Arguments

Returned Value

tt_session_prop_set

Arguments

Returned Value

1.7.2 ToolTalk Functions

Returns the number of values stored under the named prop-
erty of the session identified by sessid.

const char *sessid

Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt _default_ses-
sion().

const char *propname

The name of the property you want to examine.

int

The number of values in the specified property list.
Usett_int_error(),whichreturns Tt_status,tode-

termine if the integer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_PROPNAME
° TT_ERR_SESSION

Tt_status tt_session_prop_set (const
char *sessid, const char
*propname, const char *value)

Replaces all current values stored under the named property
of the session identified by sessid with the given character-
string value.

const char *sessid

Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt_default_ses-
sion().

const char *propname
The name of the property you want to examine.

const char *value
The new value you want to insert. If you want to remove a
value from the property list, specify the value as NULL.

Tt_status
The status of the operation. Possible values are:

161

tt_session_propname

Arguments

Returned Value

tt_session_prop-
names_count

162

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

¢ TT_ERR_PROPLEN
° TT_ERR_PROPNAME
° TT_ERR_SESSION

char *tt_session_propname (const
char *sessid, int n)

Returns the n-th element of the list of currently-defined prop-
erty names for the session identified by sessid.

const char *sessid

Name of the session you have joined. Use the sessid value the
ToolTalk service returns after you issue tt_default_ses-
sion().

int n

The number of the item in the property name list for
which you want to obtain the name. The list numbering
begins with 0.

char *

The name of the desired property from the session property

list. NULL is returned if there are n properties or fewer
Usett_ptr_error(),whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK

° TT_ERR_DBAVATIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_SESSION

int tt_session_propnames_count
(const char *sessid)

Chapter 1. ToolTalk® Overview

Arguments

Returned Value

tt_session_quit

Arguments

Returned Value

1.7.2 ToolTalk Functions

Returns the number of currently-defined property names for
the session.

const char *sessid

Name of the session you have joined. Use the sessid value the

ToolTalk service returns after you issue tt_default_ses-

sion().

int

The number of property names for the session.
Usett_int_error(),whichreturns Tt_status,tode-

termine if the integer is valid. Possible Tt_status values
are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_SESSION

Tt status

TT_ERR_SESSION
TT_ERR_DBEXIST
TT_ERR_DBAVAIL

Tt_status tt_session_qguit (const char
*gessid)

Informs the ToolTalk service that your application is no
longer interested in this ToolTalk session. The ToolTalk ser-
vice will stop delivering messages scoped to this session.

const char *sessid
Name of the session you want to quit.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_NOMP

° TT_ERR_SESSION
° TT_WRN_NOTFOUND

163

tt_spec_bprop

Arguments

Returned Value

164

Tt_status tt_spec_bprop(const char
*objid, const char *propname,
int i, unsignedchar **value,
int *length)

Retrieves the i-th value (first value is number 0) of this prop-
erty.

const char *objid

Identifier of the object involved in this operation.

const char *propname

Name of the property in which you are interested. The name
must be less than 64 characters.

int 1

Item of the list in which you are interested. The list number-
ing begins with 0.

unsigned char **value

Address of a character pointer that the ToolTalk service
should aim to a string containing the contents of the
spec’s property. If there are i values or fewer, the pointer will
be set to 0.

int *len
Address of an integer that the ToolTalk service should set to
the length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_OBJID

° TT_ERR_PROPNAME

unsigned char **value

Address of a character pointer that the ToolTalk service
aimed at a string containing the contents of the property.
If there are i values or fewer, the pointer will be set to 0.

Chapter 1. ToolTalk® Overview

tt_spec_bprop_add

Arguments

Returned Value

tt_spec_bprop_set

1.7.2 ToolTalk Functions

int *len

Address of an integer that the ToolTalk service set to the
length of the value in bytes. If there are i values or fewer,
the length will be 0.

Tt_status tt_spec_bprop_add(const char
*objid, const char *propname,
const unsigned char *value,
int length)

Adds a new byte-string to the end of the list of values asso-
ciated with this spec property.

const char *objid
Identifier of the object involved in this operation.

const char *propname
Name of the property in which you are interested.

const unsigned char *value
Byte string you want to add to the property value list.

int length
Length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_OBJID

° TT_ERR_PROPLEN
° TT_ERR_PROPNAME

Tt_status tt_spec_bprop_set (const char
*objid, const char *propname,
const unsigned char *value,
int length)

Replaces any current values stored under this spec property
with a new byte-string.

165

Arguments

Returned Value

tt_spec_create

Arguments

Returned Value

166

const char *objid
Identifier of the object involved in this operation.

const char *propname
Name of the property in which you are interested.

const unsigned char *value
Byte string you want to add to the property value list.

Note: If the value is NULL, the property is removed en-
tirely.

int length
Length of the value in bytes.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_OBJID

¢ TT_ERR_PROPLEN
° TT_ERR_PROPNAME

char *tt_spec_create(const char
*filepath)

Creates a spec (in memory) for an object. Use the objid that
the ToolTalk service returns in future calls to manipulate the
object.

Note - The object will not be a permanent ToolTalk item or
visible to other processes until the creating process does a
tt_spec_write().

const char *filepath
File name.

char *
Identifier for this object.

Chapter 1. ToolTalk® Overview

Related Functions

tt_spec_destroy

Arguments

Returned Value

tt_spec_file

Arguments

Returned Value

1.7.2 ToolTalk Functions

Usett_ptr_error(),whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_DBAVAIL

° TT_ERR_DBEXIST

° TT_ERR_NOMP

° TT_ERR_OTYPE

° TT_ERR_PATH
tt_spec_type_set ()
tt_spec_write ()

Tt_status tt_spec_destroy (const char

*objid)

Immediately destroys an object’s spec.

const char *objid
Identifier of the object involved in this operation.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_OBJID

char *tt_spec_file(const char

*objid)

Retrieves the name of the file containing the object described
by the spec.

const char *objid
Identifier of the object involved in this operation.

char *
The file’s absolute pathname.

167

tt_spec_move

Arguments

Returned Value

168

Usett_ptr_error(),whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_OBJID

char *tt_spec_move (const char
*objid, const char *newfile-
path)

Notifies the ToolTalk service that this object has moved to a
different file. The ToolTalk service returns a new objid for the
object, and a forwarding pointer is left from the old objid to
the new one.

Note - If a new objid is not required (because the new and
old files are in the same file system), TT_WRN_SAME_OBJID
is returned.

For efficiency and reliability, your application should re-
place any references it has to the old objid with references to
the new one.

const char *objid
Identifier of the object involved in this operation.

const char *newfilepath
New file name.

char *
New unique identifier of the object involved in this opera-
tion.

Usett_ptr_error(),whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt _status values
are:

° TT_OK
° TT_ERR_DBAVAIL

° TT_ERR_DBEXIST

Chapter 1. ToolTalk® Overview

tt_spec_prop

Arguments

Returned Value

1.7.2 ToolTalk Functions

° TT_ERR_NOMP

° TT_ERR_OBJID

° TT_ERR_PATH

° TT_WRN_SAME_OBJID

char *tt_spec_prop(const char
*objid, const char *propname,
int 1)

Retrieves the i-th value (first value is number 0) of the prop-
erty associated with this object spec.

Note - If this value has embedded nulls, you have no way
to determine its length.

const char *objid
Identifier of the object involved in this operation.

const char *propname
Name of the property in which you are interested.

int 1
Item of the list in which you are interested. The list num-
bering begins with 0.

char *

Contents of the property value. A NULL value is returned if
there are i values or less.

Usett_ptr_error(),whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt_status values
are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_NUM

° TT_ERR_OBJID

° TT_ERR_PROPNAME

169

tt_spec_prop_add

Arguments

Returned Value

Related Functions
tt_spec_prop_count

Arguments

Returned Value

170

Tt_status tt_spec_prop_add(const char
*objid, const char *propname,
const char *value)

Adds a new item to the end of the list of values associated
with this spec property.

const char *objid
Identifier of the object involved in this operation.

const char *propname
Property in which you are interested.

const char *value
New character-string to be added to the property value list.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_OBJID

° TT_ERR_PROPNAME
° TT_ERR_PROPLEN

tt_spec_prop_set ()

int tt_spec_prop_count (const
char *objid, const char
*propnamnme)

Returns the number of values listed in this spec property.

const char *objid
Identifier of the object involved in this operation.

const char *propname
Name of the property in which you are interested.

int
Number of values listed in the spec property.

Chapter 1. ToolTalk® Overview

tt_spec_prop_set

Arguments

Returned Value

1.7.2 ToolTalk Functions

Usett_int_error(),whichreturns Tt_status,tode-
termine if the integer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_OBJID

° TT_ERR_PROPNAME

Tt_status tt_spec_prop_set (const char
*objid, const char *propname,
const char *value)

Replaces any values currently stored under this property of
the object spec with a new value.

const char *objid
Identifier of the object involved in this operation.

const char *propname
Name of the property in which you are interested.

const char *value
Value you want to put in the property value list. If value is
NULL, the property is removed entirely.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_OBJID

° TT_FERR_PROPNAME
° TT_ERR_PROPLEN

171

Related Functions
tt_spec_propname

Arguments

Returned Value

tt_spec_propnames_
count

Arguments

Returned Value

172

tt_spec_prop_add()

char *tt_spec_propname (const char
*objid, int n)

Returns the n-th element of the property name list for this
object spec.

const char *objid
Identifier of the object involved in this operation.

int n
Item of the list in which you are interested. The list number-
ing begins with 0.

char *
Property name. NULL is returned if there are n properties or
less.

Usett_ptr_error (), whichreturns Tt_status, tode-
termine if the pointer is valid. Possible Tt_status values
are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

¢ TT_ERR_NUM

° TT_ERR_OBJID

int tt_spec_propnames_count
(const char *objid)

Returns the number of property names for this object.

const char *objid

Identifier of the object involved in this operation.

int

Number of values listed in the spec property.
Usett_int_error (),whichreturns Tt_status,tode-

termine if the integer is valid. Possible Tt_status values
are:

° TT_OK

° TT_ERR_DBAVAIL

Chapter 1. ToolTalk® Overview

tt_spec_type

Arguments

Returned Value

tt_spec_type_set

Arguments

Returned Value

1.7.2 ToolTalk Functions

° TT_ERR_DBEXIST
° TT_ERR_NOMP
° TT_ERR_OBJID

char *tt_spec_type(const char
*objid)

Returns the name (otid) of the object type.

const char *objid
Identifier of the object involved in this operation.

char *
Type of this object.

Usett_ptr_error(),whichreturns Tt_status, tode-
termine if the pointer is valid. Possible Tt _status values
are:

° TT_OK

° TT_ERR_DBAVAIL
° TT_ERR_DBEXIST
° TT_ERR_NOMP

° TT_ERR_OBJID

Tt_status tt_spec_type_set (const char
*objid,
const char *otid)

Assigns an object type (otype) value to the object spec. The
type must be set before the spec is written for the first time,
and cannot be changed thereafter.

const char *objid
Identifier of the object involved in this operation.

const char *otid
Otype you want to assign to the spec.

Tt_status
The status of the operation. Possible values are:

° TT_OK
° TT_ERR_DBAVAIL

° TT_ERR_DBEXIST

173

Related Functions

tt_spec_write

Arguments

Returned Value

Related Functions

tt_status_message

Arguments

Returned Value

174

° TT_ERR_NOMP

° TT_ERR_OBJID

° TT_ERR_READONLY
tt_spec_create()
tt_spec_write()

Tt_status tt_spec_write(const char
*objid)

Writes the spec and any associated properties to the ToolTalk
database. It is not necessary to do a write after a destroy.

Note — Several changes can be “batched” between write
calls; for example, you might create an object spec, set some
properties, and then write all the changes at once with one
write call.

const char *objid
Identifier of the object involved in this operation.

Tt_status
The status of the operation. Possible values are:

° TT_OK

° TT_ERR_DBAVAIL

° TT_ERR_DBEXIST

° TT_ERR_NOMP

° TT_ERR_OBJID
tt_spec_create()
tt_spec_type_set ()

char *tt_status_message (Tt_sta-
tus ttrc)

Returns a pointer to a message describing the problem indi-
cated by this Tt_status code.

Tt_status ttrc
Tt_status code you received during an operation.

char *
Pointer to character string describing Tt_status code.

Chapter 1. ToolTalk® Overview

tt_X session

Arguments

Returned Value

Usett_ptr_error (), whichreturns Tt_status,tode-
termine if the pointer is valid. Possible Tt_status values
are:

° TT _OK
° TT_xxx

char *tt_X_session(const char
*xdisplaystring)

Returns the session associated with the named X Window
System display.

const char *xdisplaystring
Name of an X11 display server, such as somehost:0, :0,and
so forth.

char *

Identifier for the current ToolTalk session.
Usett_ptr_error (), whichreturns Tt_status,tode-

termine if the pointer is valid. Possible Tt_status values

are:

° TT_OK
° TT_NOMP

175

CHAPTER

SPARCompiler™ Compilation
Technology

2.1 The SPARCompiler family of robust, optimizing compilers

. and environments provides the cornerstone of Sun’s soft-
Introduction ware engineering portfolio. With seven powerful compil-
ers—Ada, C, C++, COBOL, Common Lisp, FORTRAN, and
Pascal—and the full range of SPARCsystem platforms, Sun
offers you the advantage of a single source for the system and
tools you need to make the most of your software develop-
ment investment.

Designed in concert with SPARC technology, SPARCom-
piler products take full advantage of the SPARC architecture
to provide optimization that delivers unprecedented perfor-
mance. The code generation modules of the SPARCompiler
products utilize state-of-the-art innovations in compiler tech-
nology, particularly in code optimization. Because compil-
ers for SPARC and other Reduced Instruction Set Computer
(RISC) architectures synthesize instruction sequences that
correspond to Complex Instruction Set Computers” (CISC)
more complicated instructions, RISC compilers often pro-
duce more instructions (up to 20% more) than comparable
CISC machines. However, these are almost all single-cycle
instructions. Therefore, good optimization technology plays
a very important role in SPARC system performance.

2.2
SPARCompiler
Family Overview

Table 2.1. Features/benefits.

An individual SPARC machine is an implementation of
the SPARC Instruction Set Architecture (ISA). The perfor-
mance of a SPARCsystem is a function of the architecture, the
hardware implementation, and the code generated by the
compiler. Because the SPARC ISA and SPARCompiler tech-
nology were developed in concert, the compilers take careful
advantage of the architecture to improve performance.
Among the architectural features SPARC includes are:

* Register windows

* Delayed branches and delayed loads
* Hardware interlocks

* Floating-point coprocessors

Optimized for the SPARC architecture and hardware im-
plementations, SPARCompiler products can significantly in-
crease application speed and therefore play an integral role
in the performance of SPARCsystems.

The seven members of the SPARCompiler family—Ada, C,
C++, COBOL, Common Lisp, FORTRAN, and Pascal—all
share key features that enhance each product, enable coordi-
nation between the products, and maximize your develop-
ment dollar. The major features, and their benefits, are as
shown in Table 2.1.

Features

Benefits

Optimized for the SPARC architecture | Deliver unprecedented performance on SPARC

platforms.

Interlanguage calling

Because they enable you to combine your existing code
with modules written in other languages,
SPARCompilers protect your current software
investment.

Multiple levels of optimization

Provide flexibility to control compile-time versus
execution-time and memory size versus space trade-offs
in the compiled code.

International character set support Meet the needs of global markets.

Industry and de facto standards

Ensure compatibility and portability while providing
competitive advantages through language
enhancements.

178

Chapter 2. SPARCompiler™ Compilation Technology

Features

Benefits

Access to graphics and

UNIX system calls, and SunOS™
enhanced utilities.

OpenWindows™ XView™ libraries, applications and shorten time to market.

Reduce time and resources required for sophisticated

Integration with SPARCworks
programming tools and the
OpenWindows window system.

Create an integrated development environment that
enhances programmer productivity.

2.3

C, C++,
FORTRAN, and
Pascal

Compiler Structure

2.3 C, C++, FORTRAN , and Pascal

The Sun SPARCompiler products combine lexical, syntac-
tic, and static semantic components (the language “front
ends”) with code generation and optimization modules (the
language “back ends”). Four of the SPARCompiler prod-
ucts—C, C++, FORTRAN, and Pascal—share the same back
end, while the other three back ends provide language spe-
cific optimizations and features. As Figure 2.1 shows, all
seven languages are targeted to the SPARC architecture and
are supported by powerful programming environments.

The next section describes the C, C++, FORTRAN, and
Pascalcompilers, while the following three sections discuss
the Ada, Common Lisp, and COBOL compilers.

As mentioned above, four of the SPARCompilers—C, C++,
FORTRAN, and Pascal—share a single, very efficient back
end. These particular languages share a common back end
due to the characteristics of the languages themselves, histor-
ical engineering effort at Sun, and the needs of the develop-
ment tool environments. The major benefit of focusing
engineering efforts on a common back end is that any perfor-
mance improvement or bug fix enhances all four of these
compilers.

Figure 2.2 shows how a program flows through the compila-
tion phases that transform it into an executable program. The
solid arrows describe the path when optimization and inline
code expansion are both enabled. When either is disabled,
certain components are skipped.

Sun’s optimization technology is designed to satisfy sev-
eral goals, including:

* Support for multiple source languages

* Production of high-quality, high-performance code

* Reduction of compilation time to no more than neces-
sary to do ambitious optimization

179

SPARCompiler Features

Robustness Performance Standards Support
SPARC
SPARCworks works/ Animator SPE
Ada
Sun Sun Sun Sun Sun Sun Sun
C C F r A C C
+ o] a d o
R s o
* T a B m
< O m
R a 1
’ o
A 1 -
N
I
i
5
P
i Common Back End]

SPARC

Figure 2.1. SPARCompiler features.

180

The rest of this section describes the various phases of the
compilation process, with emphasis on optimization.

Preprocessors are programs that manipulate source text;
they transform the code into a form acceptable by a compiler
or assembler. cpp is the most widely used preprocessor. It
is independent of any language (although it was designed to
be used with C) and can be used to define symbolic constants,
insert files into the source stream, expand macros, and con-
ditionally compile segments of code.

The front end scans and parses the source-language state-
ments that constitute a procedure and checks static seman-
tics. The target of the front end is an intermediate language
called Sun IR (Intermediate Representation). Sun IR is a lan-
guage- and machine-independent representation that is suit-
able for global optimization and code generation. The
following features of Sun IR facilitate global optimization:

Chapter 2. SPARCompiler™ Compilation Technology

Sun C++

Sun FORTRAN

Pascal

FORTRAN
Source

Pascal
Source

Sun Intermediate
Representation

Optimizations

auto-inlining
register allocation
tail call optimization
constant propagation
dead code elimination
complex expression expansion
common subexpression elimination
induction-variable strength reduction
algebraic address expression reorg.
detection of interesting variables
loop-invariant code motion
tail recursion elimination
aggregate breaking
alias determination
copy propagation
loop unrolling

Global Optimizer
(IROPT)

Optimizations

loop inversion
constant propagation

deletion of unreachable code
utilization of machine idioms
elimination of redundant loads/stores

elimination of unnecessary jumps
leaf routine optimization

instruction scheduling

register coalescing
cross jumping

Code Generation
lcg, as,

.o fi t
linker 9 Homa
(1d) |
I a.out]

Figure 2.2. SPARCompiler structure and features.

* Alanguage-independent symbol table structure that ex-
plicitly represents storage classes, constants and vari-
ables

* Facilities to represent static equivalencing and dynamic
aliasing

* A general framework for control flow analysis, data
flow analysis, and most advanced global optimization
techniques.

The following short sections summarize the features of the
four front ends that share the common back end.

181

Sun C™

Sun C++™

Sun FORTRAN™

182

Sun C offers an ANSI C language compliant compiler, as well
as an advanced K&R version. With the ANSI C compiler,
your programs are fully portable across all ANSI C plat-
forms. The two compilers included in Sun C allow you the
flexibility to choose between these different C languages. The
Sun C package also provides the following features:

* Function prototyping to ensure better static type check-
ing of programs. Static type checking enables you to
find logic errors at compile time, which reduces soft-
ware development and maintenance time.

* Language enhancements, such as the const and vol-
atilekeywords, help improve program correctness by
allowing better control of variables and improving the
scope of optimization.

* Multi-byte characters support writing code that can be
localized to particular countries.

* -fsingle command-line options permit FORTRAN-
like floating-point expression evaluation. This option
enables developers to write computation-intensive ap-
plications in C.

Sun C++ implements the complete C++ language as de-
scribed in American Telephone &Telegraph’s C++ Language
System Product Reference Manual. Sun C++ also incorporates
all the functionality of AT&T’s latest c front C++ translator.
The features of Sun C++ include:

* ANSI C facilities

* Position-independent code generation

* Enhanced cpp preprocessor that handles C++ tokens

* A set of classes commonly used in the development of
object-oriented programs.

Sun FORTRAN provides an ANSI FORTRAN 77 develop-
ment system with VAX/VMS™ FORTRAN 4.0 extensions.
Sun FORTRAN conforms to the ANSI X3.9-1978 and ISO
1539-1980 FORTRAN standards. In addition, it has been val-
idated by NIST and conforms to FIPS 69-1 BS6832 and MIL-
STD 1753. The features of Sun FORTRAN include:

* Extensive VMS compatibility

¢ Complex expression optimization

¢ Fast and accurate degree-based transcendental func-
tions

* Support for C preprocessor directives

Chapter 2. SPARCompiler™ Compilation Technology

Sun Pascal™

2.3 C, C++, FORTRAN, and Pascal

* DO/ENDDO and DO WHILE statements.

Sun has also added several other extensions to the FOR-
TRAN compiler for supercomputer compatibility, including
the POINTER datatype and quad- precision floating point.

Sun Pascal is an optimizing, feature-rich compiler for Pascal,
a widely used structured language originally designed as an
aid for teaching programming. Sun Pascal fully conforms to
ISO Level 0 Pascal (equivalent to ANSI/IEEE 770X3.97-1983).
Sun Pascal also offers language extensions compatible with
many Pascal compilers, specifically those of HP / Apollo DO-
MAIN® Pascal. Sun Pascal’s features include:

* Conformant arrays, as specified in the ISO Level 1 Pas-
cal Standard

* Variable-length string type

* Single- and double-precision IEEE floating-point sup-
port

¢ PUBLIC and PRIVATE declarations

* External C and FORTRAN declarations

After lexical, syntactic and static semantic processing, the
remainder of the compilation steps are performed by the
back end shared by the C, C++, FORTRAN, and Pascal prod-
ucts.

The machine-independent (“global”) optimizer is called
iropt. Itis applied to files and begins by performing auto-
matic inlining, followed by alias analysis. Next a series of
data flow analyses and transformations are applied to each
procedure in the file. For example, data flow analysis could
determine that a variable has the same constant value every
time control reaches a particular point, and is therefore a can-
didate for replacement by a constant. The result of the trans-
formations is a modified version of the Sun IR for the
program.

Automatic inlining provides many benefits. Obviously
modules that have been inlined have no “procedure call
overhead.” In addition, by moving the body of the module
into the caller, many new opportunities for optimization are
created. In effect, this provides interprocedural analysis.

The aliaser module deals with problems of aliases arising
from the presence of multiple names that map to the same
memory areas. It is essential to good optimization that the
range of possible aliases be determined. Variables that are
aliases do not readily lend themselves to optimization.

183

184

Therefore it is essential to minimize the range of aliases when
doing ambitious optimization. In standard FORTRAN, the
set of names that may refer to the same location may be de-
termined exactly. This is known as “static aliasing.” Lan-
guages such as C, C++, Sun’s extended FORTRAN, and
Pascal introduce an additional challenge called dynamic
aliasing. For example, in C, aliases may arise from memory
overlaps, array references, use of pointers, etc. Dynamic
aliases are defined as aliases that cannot be determined ex-
actly and are therefore given special attention by the aliaser
module.

The following additional global optimizations are per-
formed by iropt. Definitions of these optimizations can be
found in “Appendix A—Optimization Definitions.”

* Aggregate breaking

* Algebraic address expression reorganization
* Common subexpression elimination
* Complex expression expansion

* Copy and constant propagation

* Dead code elimination

¢ Induction-variable strength reduction
* Loop-invariant code motion

* Loop unrolling

* Global register allocation

¢ Tail call optimization

The inliner performs inline assembly language expansion.
Inline expansion provides a way for the compiler writer or
user to specify assembly language code sequences to replace
source-language calls. To do this, the compiler writer and/
or user provides a collection of “inline template files.” The
greatest service provided by the assembler inliner is that spe-
cial code sequences (such as special supervisor instructions,
and implementation dependent instructions) can be ac-
cessed without changes to the compilation system. In addi-
tion, Sun provides some templates to accelerate performance
of some common library interfaces.

The postpass optimizer performs the following local opti-
mizations. Definitions can be found in “Appendix A—Opti-
mization Definitions.”

¢ Constant propagation
* Cross jumping
* Dead code elimination

Chapter 2. SPARCompiler™ Compilation Technology

Levels of
Optimization

2.3 C, C++, FORTRAN, and Pascal

¢ Elimination of redundant loads/stores
* Elimination of unnecessary jumps

* Instruction scheduling

¢ Leaf routine optimization

* Loop inversion

* Register coalescing

The assembler then generates relocatable object code. The
linker then:

* Combines separately compiled object files
* Resolves intermodule references
* Searches libraries to satisfy unresolved references.

In the case of static linking, the linker combines the relo-
catable object with other necessary relocatable objects (com-
monly from library files), and produces the executable file.
Dynamic linking is a bit more complicated.

The SPARCompilers support several levels of optimization
that require various amounts of compilation time and pro-
duce correspondingly varying code quality. The default is to
do no optimization at all. This is not recommended for any
use except debugging, where it is important to minimize
compilation time. Each level includes the optimizations of
the previous levels. In addition to the “no optimization”
level, these are:

01

At this level, only postpass optimization is invoked. Using
level 01 is recommended only if the higher levels of optimi-
zation result in excessive compilation time, or running out of
swap space.

02
This invokes all the global optimizations, except automatic
inlining prior to code generation.

Note - This is the standard optimization level for most mod-
ules.

03

This performs the same optimizations as 02, but on a wider
class of expressions, including references and definitions of
external and indirect variables.

185

186

04
This level traces, as carefully as it can, what pointers may
point to, and makes them candidates for optimization. Italso
invokes automatic inlining. This level of optimization is rec-
ommended for the most computation-intensive modules,
and not recommended for modules that are not computa-
tion-intensive.

Multiple levels of optimization are provided because ag-
gressive optimization involves trade-offs:

¢ Compile time vs. execution time
* Memory space vs. execution time

As a rule of thumb, higher levels of optimization increase
compile time, decrease execution time and require more
memory and disk space to compile programs. Figure 2.3
shows optimization trade-offs using the SPECmark bench-
mark test.

For some programs, levels 03 and 04 significantly in-
crease compilation time with a small effect on run-time per-
formance beyond that provided by level 02. In these cases
the developer may choose to compile at level 02 to avoid the
compile-time penalty. In fact, in some cases, by optimizing
different procedures at different levels, you can produce
overall faster executing code. Use of multiple optimization
levels is usually the best way to enhance performance for a
large application. Level options can easily be encoded in a
Makefile.

Another feature of the back end is automatic back-off of
the optimization level. If the compilation of a routine would
fail due to lack of sufficient swap space, the optimizer auto-
matically recompiles that routine (only) at the next lower op-
timization level. When this happens, the user is alerted by
means of a warning message.

Selection of optimization flags has been simplified for the
common case. Typically, users want a single option, and de-
fine their intent as “to generate the best code possible in a
reasonable amount of time that runs well on my machines.”
The -fast compiler option is intended to provide this. It
provides a convenient way to get near maximum perfor-
mance with one switch by bundling together several inde-
pendent options. Any subset of -fast attributes can be
specified explicitly as indicated below.

The -fast option combines:

Chapter 2. SPARCompiler™ Compilation Technology

22.00

1111

20.00

NN

18.00

P11l

16.00

111

14.00

12.00

10.00

SPECmarks

8.00

1111

6.00

1111

4.00

1111

2.00

P11

0.00

Optimization level - no-opt

o1 02 03 04

Lines compiled/min - 16,00

9,200 6,200 5,100 3,300

Figure 2.3. Effect of optimization level on execution time and compilation time. SPECmark
tests run on a SPARCstation 2 with SunOS 4.1.4, using Sun Fortran 1.4 and Sun C 1.1.

2.3 C, C++, FORTRAN, and Pascal

¢ Default optimization level: in the absence of an explicit

-On option following - fast, uses -02 to obtain the best
trade-off between compile and execution time.

Best choice for compile-time hardware: In the absence
of an explicit -cg{87,89} on SPARC-based systems, -
fast generates the fastest code for the hardware of the
compile-time machine.

-dalign: assumes double word alignment of double-
precision floating-point variables in FORTRAN, unless
-nodalign is explicitly specified after -fast.
-fsingle: for C code, generates single-precision float-
ing-point expression evaluation for single-precision op-
erands.

187

24
Ada

188

¢ -1libmil: uses the Sun-provided libm. il inline ex-
pansion templates automatically after any user-speci-
fied templates.

* -fnonstd: causes hardware traps to be enabled for
floating-point overflow, division by zero, and invalid
operation exceptions, rather than following the IEEE
standard.

-fast isanoption that provides a feature many Sun users
have requested. It picks the most popular options, balancing
compilation and execution speeds, assumes that the target
machine is identical to the compilation machine and exploits
every major compilation feature available. It does not pro-
vide the highest level of optitimization (- fast -04 accom-
plishes that), and it does assert that double-precision values
are double word aligned; therefore it is not suitable for all
programs under all conditions.

Sun Ada™ combines a fast, full-featured optimizing com-
piler with automated program-generation tools for minimal
recompilations, library management utilities that enhance
compiler performance, and a complete suite of programming
tools. The Sun Ada optimizing compiler, based on the Verdix
compiler system, is the heart of the Sun Ada language sys-
tem. Highly tuned for SPARC-based systems, the Sun Ada
compiler features exceptionally fast complilation for quick
throughput and productive development.

The Sun Ada compiler is constructed of three major com-
ponents. The front end performs lexical, syntactic and se-
mantic analysis on Ada source code and emits a target
independent linear intermediate language (IL). The ILis pro-
cessed by an optimizer (OPTIM) and then the code generator
(CG) produces SPARC object code. The OPTIM optimizing
module performs many modern code optimizations, several
of which are specific to Ada. The front end also handles some
optimizations, such as automatic inlining, that contribute to
the speed of the code produced. In addition to optimizations
in generated code, a passive task optimization has been in-
troduced that can improve rendezvous times for some com-
mon uses of tasks by as much as a factor of eight. Also, the
exception tables and look-up algorithms have been opti-
mized to yield fast exception-handling performance.

Figure 2.4 shows the Sun Ada development environment.

Chapter 2. SPARCompiler™ Compilation Technology

ERROR
PROCESSOR

>

SYMBOLIC
DEBUGGER

-
ADA Sun
ource FRONT END Ad
— 1. Lexical Analysis 4 Compailer
o 2. Syntactic Analysis
\AE/ 3. Syntactic Error Recovery
Progrim 4. Semantic Analysis
T -—
+ + Raw
Error
LIBRARY
MANAGEMENT
TOOLS | |
CODE GENERATOR
1. Code Generation
2. Code Optimization
3. Peephole Optimization
Runtime
System
bjects
— -
Oll:?ﬁft Execut-
PRE-LINKER [P |[\oorn able

Figure 2.4. Sun Ada.

Optzmz ~ations The following optimizations are performed automatically by
the Sun Ada compiler. All three components of the compiler,
the front end, the optimizer, and the code generator contrib-
ute optimizations. Definitions of these options can be found
in “Appendix A—Optimization Definitions.”

* Algebraic Address Expression Reorganization
¢ Common Subexpression Elimination
* Constant Folding
* Copy Propagation
* Dead Code Elimination
¢ Elimination of Redundant Loads/Stores
¢ Elimination of Unnecessary Jumps
¢ Induction-Variable Strength Reduction
2.4 Ada

189

Fast Exceptions

Passive Tasks

190

¢ Loop-Invariant Code Motion

¢ Optimized Block Moves

* Range Propagation for Elimination of Constraint
Checking

¢ Register Allocation

OPTIM constructs a flowgraph for each Ada subprogram
and then builds a Directed Acyclic Graph (DAG) for each ba-
sic block. The optimizer is iterative; it repeatedly applies a
set of simple transformations to the flow graph, until no fur-
ther opportunities for optimization are detected or until a
specified iteration limit has been reached. This structure
makes the optimizer reliable and easy to understand and
maintain. Performance of the optimizer depends more on
the complexity of the control flow in the Ada source code
than on the number of source lines.

When programming close to the machine level, certain op-
timizations must be suppressed. Compiler switches offer
several levels of optimization and allow optimizations that
involve code motion to be suppressed. The pragma OPTI-
MIZE_CODE (OFF |ON) can suppress or re-enable optimiza-
tion for a specific subprogram or package. The pragma
VOLATILE (object_name) guarantees that loads and stores to
the named object will be performed as expected after optimi-
zation.

One key Sun Ada design decision is that adding an exception
handler to a subprogram (or block) should not slow down
the normal execution of that subprogram. In particular, ex-
ception handlers do not incur any performance penalties un-
less an exception is raised. This is a highly desirable feature,
but it has the drawback of complicating the handling of ex-
ceptions. For user code that raises exceptions frequently, this
optimization improves performance by computing complex
tables at link time that permit high-speed searches for the
proper exception handler. As a result of this optimization,
Sun Ada customers have the best of both worlds; there is no
overhead for normal execution in subprograms that contain
exception handlers, and when an exception is raised, excep-
tion handling is very fast.

The passive task optimization is a textbook example of: “Pro-
gram semantics exposed by the programming language can
be optimized by the compiler.” It simply recognizes that a
large percentage of all Ada tasks are used exclusively to seri-

Chapter 2. SPARCompiler™ Compilation Technology

Remote Compilation

Large Program
Support

Interlanguage
Calling

2.4 Ada

alize activities—for example, to serialize access to a data
structure. Passive task optimization can be viewed as com-
piling each accept block into a subprogram and each task en-
try into a semaphore. The other half of the optimization
occurs when compiling a call to the passive task. Instead of
generating calls to the run-time system to do a rendezvous,
calls are generated to lock the semaphore and do a procedure
call. Semaphores and procedure calls are much faster than
full-blown rendezvous, especially because they involve only
one task (as opposed to two), since the passive task is never
made known to the run-time system. On return from the
rendezvous, a special resume handler activates one of the
tasks suspended on the semaphore, if any.

Passive tasks are a general class of task that includes
“monitors.” Monitor tasks are extremely important to fast
performance in typical Ada real-time situations, and both
Sun Ada and the accompanying debugger support it com-
pletely.

The -L option to the compiler and many other Sun Ada tools
permits the user to specify the name of the Ada library con-
text in which the compilation is to take place. This means
that only one copy of a source file need exist, even if it is
shared by projects being developed for different target envi-
ronments (for example, both the development host and an
embedded target).

Many of the Sun Ada tools have been enhanced to support
very large programming projects. For example, the prelinker
is designed to compute quickly the elaboration order of large
numbers of units.

The Ada language defines the INTERFACE pragma for call-
ing subprograms written in other languages. Sun Ada fully
supports the INTERFACE pragma for C, C++, FORTRAN,
and Pascal. Sun Ada also supports two additional pragmas,
INTERFACE_NAME and EXTERNAL_NAME, which allow Ada
to access global data declared in other languages and allow
other languages to call Ada subprograms (callbacks). These
and other aspects of this topic are covered in detail in the
“Interface Programming” section of the Sun Ada Program-
mer’s Guide.

191

Miscellaneous
Optimizations and
Pragmas

25
Sun Common
Lisp™

192

Ada elaboration order checks are eliminated for packages
with static elaboration (for example, those with no dynamic
initialization of library level or global variables).

Sun Ada also supports inline subprogram expansion for
all types of procedures and functions, including generic and
machine-code procedures. Not only does this eliminate call
overhead, but it also allows optimizers to work across sub-
program boundaries.

Sun Ada shares generic bodies, so multiple instantiations
of a generic with similar parameters use the same object code.
This saves code space at the expense of execution time. Sun
Ada does support unshared instantiation, so actual parame-
ters can be propagated throughout a generic body.

The following are some of the more important pragmas
supported by Sun Ada:

pragma NOT_ELABORATED

Suppresses the generation of elaboration code for library
packages and issues warnings for constructs that require
elaboration.

pragma INLINE_ONLY

Suppresses generation of a callable version of the
subprogram. Otherwise behaves the same as INLINE.

pragma NON_REENTRANT

Uses a statically allocated parameter block for parameter
passing and reduces call overhead. Can only be applied
to subprograms nested immediately within a library
package.

pragma NO_IMAGE

Suppresses the generation of image tables for enumeration
types. Use of the IMAGE attribute causes an error message.
This does not affect the debugger’s ability to display enu-
meration values symbolically.

Sun Common Lisp is now available exclusively from Lucid
Inc. of Menlo Park, California.

Sun Common Lisp is an implementation of Common Lisp
with extensive enhancements to reflect the proposed ANSI
Common Lisp standard. Sun Common Lisp is a general-pur-
pose programming language with a rich set of built-in func-
tions for processing both symbolic and numerical data and a

wide variety of predefined data types. Sun Common Lisp
provides the flexibility that comes from run-time binding of

Chapter 2. SPARCompiler ™ Compilation Technology

The Common Lisp

Object System
(CLOS)

Dual Compiler
System

2.5 Sun Common Lisp™

functions and from the fact that Lisp programs can be very
naturally processed as Lisp data.

Beyond this, Sun Common Lisp is an interactive program-
ming system that includes:

¢ Aninterpreter

* Anincremental compiler

* A garbage collector

¢ Window interfaces

* An object-oriented programming system
¢ A debugger

* An error-handling facility.

Features like the Lisp View interface for the X Window sys-
tem, the Multitasking Facility, and the Foreign Function In-
terface, among others, are major extensions beyond the
proposed Common Lisp standard. Many of these develop-
ment environment features and tools are described in the
SPARCworks Development Environment white paper. The rest
of this section provides an overview of CLOS, the Sun Com-
mon Lisp dual compilation system and SPARC support for
Lisp.

Sun Common Lisp supports the Common Lisp Object Sys-
tem, an object-oriented extension to Common Lisp, that is
part of the forthcoming draft ANSI Common Lisp standard.
CLOS hasiits origins in other Lisp-based object-oriented par-
adigms such as Flavors and CommonLoops. CLOS incorpo-
rates the years of experience gained from these models, and
has been designed to run on a large array of hardware plat-
forms and operating systems.

Among the fundamental notions of CLOS are classes, in-
stances, generic functions, and methods. Important features
of the system are inheritance (including multiple inherit-
ance), method combination, and multi-methods.

For application delivery, Sun Common Lisp offers CLOS
extensions that precompile the dispatch code used by generic
functions. Although CLOS applications run correctly with-
out a compiler or precompiled dispatch code, they run faster
if the dispatch code is precompiled.

Sun Common Lisp has two distinct compilation modes: one
that emphasizes compilation speed and one that emphasizes
run-time performance.

193

Optimization
Reporting Facility

194

* The development mode compiles the code quickly with
few optimizations. Frequent compilations during the
development of a Lisp application make compilation
speed an important factor in programmer productivity.

* The production mode fully optimizes the compiled code
for the most efficient run-time performance available.
Most users use the production mode of the compiler
when they have completed development of a section of
code and compile it for the final time.

The Lisp production mode compiler does constant folding
and constant propagation, dead code elimination, and tail
call optimization (tail recursion elimination and tail merg-
ing). Type declarations are not necessary in Lisp; however,
when used they allow the compiler to do further optimiza-
tions. With appropriate declarations in the source code, the
compiler will

° Eliminate run-time type checking for arithmetic oper-
ations

° Generate fast code for standard integer computation
and for floating-point computation

° Provide fast array access

In many cases the compiler will automatically propagate
type information to parts of the code that do not contain dec-
larations.

Development mode is the default, but the user can change
the compilation mode by changing the optimization setting
of the compiler. In production mode, the user can also spec-
ify the amount of run-time error checking, or safety, retained
in the compiled code. The development mode inherently re-
tains a high degree of safety.

Users have typically found a three to five times improve-
ment in compilation speed when they use development
mode rather than the production mode. Run-time degrada-
tion is roughly 50%, depending on the nature of the program.
Part of the performance advantage of the development com-
piler comes from its generating less garbage to be paged or
collected.

The user can increase the efficiency of code compiled when
using the production mode by providing type declarations
that eliminate run-time type checking. In addition, the com-
piler helps the user optimize code by displaying reports

Chapter 2. SPARCompiler™ Compilation Technology

Foreign Function
Interface

Ephemeral Garbage
Collection

Multitasking (Stack
Groups)

2.5 Sun Commorn.Lisp™

about the optimization attempts that it makes while it com-
piles code. Optimization reports describe instances where
the compiler optimized a section of code and when it did not,
but could have, if it had more type information. This useful
information allows users to add declarations that improve
the performance of an application and reduce the amount of
time spent optimizing code.

Sun Common Lisp provides a Foreign Function interface that
allows users to link compiled C, C++, Pascal, and FORTRAN
code with Lisp programs and to link Lisp programs into ex-
ecuting C, C++, Pascal, and FORTRAN code. The Foreign
Function Interface automatically handles the data type coer-
cions necessary to pass data between Lisp and the foreign
code.

Correspondence between Lisp types and a set of low-level
foreign data types is predefined, and Sun Common Lisp pro-
vides constructs for defining new foreign structure types.
Foreign data structures can be accessed in Lisp and passed
back and forth between the different languages.

The Ephemeral Garbage Collector (EGC) replaces long gar-
bage collection intervals with several shorter intervals that
are generally imperceptible to users. Most garbage collec-
tions last only a few milliseconds, so that productive devel-
opment time or execution of critical applications is not
interrupted.

When the EGC is on, new Lisp objects are created in a
small consing area, which when full, can be collected quickly.
Objects from this small ephemeral area that survive the gar-
bage collection process migrate to more long-lived areas of
memory where garbage is collected less frequently, resulting
in more focused garbage collection of only highly volatile ar-
eas. When all ephemeral levels have been filled with objects,
the entire system can be collected with the stop-and-copy col-
lector. The EGC can be turned on or off as desired, so that
garbage collection does not impact the system at any partic-
ular time.

Lisp 4.0 includes the capability to run lightweight processes,
implemented in stack groups, for multitasking Lisp applica-
tions. The Multitasking Facility allows the user to schedule
execution of multiple processes running concurrently in the
same Lisp environment. The advantage of using the Multi-

195

SPARC Support for
Lisp

196

tasking Facility is that it allows users to split larger jobs into
separate tasks that execute independently.

The Multitasking Facility has its own scheduler that uses
state information to stop a process and restart it later without
changing the results of its execution. Lisp also provides con-
structs for handling and scheduling processes that make the
implementation of multiprocessing applications both easy
and natural. In addition, within Sun Common Lisp the de-
veloper can set the priorities of processes to control execu-
tion.

In the past, Lisp programs have had a reputation for slow
execution compared to other compiled languages. This
slowness has been largely due to the high degree of flexibility
and the sophisticated error detection and recovery facilities
that are the hallmarks of Lisp. For example, each arithmetic
operation is generally preceded by one or more instructions
that examine the type of each operand and then branch to the
appropriate type of operation. Any program that must per-
form these checks at runtime is at a performance disadvan-
tage when compared to less flexible languages such as C and
FORTRAN, which make those decisions during compilation.

One way to make Lisp run faster is to eliminate some of
the run-time type checks. The programmer has the option to
declare that a given variable will always hold values of a spe-
cific type. The compiler can then eliminate the type-checking
instructions and produce object code with performance and
safety comparable to other programming languages.

The disadvantage of such an approach is that it eliminates
some of the flexibility designed into Lisp. The programmer
can trade the advantage of flexibility and easier-to-debug
programs for faster execution. On Sun workstations the op-
timization reports greatly facilitate this step, but it is still a
necessary part of the development cycle.

Historically, Lisp machines have been noted for their han-
dling of this problem. In such special-purpose computers,
type checking of operands does not require additional in-
structions. Instead, the check is done as part of the machine
instruction either in special hardware or in microcode. De-
velopers could take advantage of all of Lisp’s flexibility and
still have programs run quickly. This efficiency comes at a
price, though: compared to general-purpose workstations,
Lisp machines are more expensive, have a less flexible and

Chapter 2. SPARCompiler™ Compilation Technology

Tagged Arithmetic

2.5 Sun Common. Lisp™

less open architecture, and are harder to integrate with other
systems.

The SPARC architecture used in the Sun-4™ and SPARC-
system product families offers Sun Common Lisp developers
many of the more important advantages of the dedicated
Lisp machine without the problems associated with a spe-
cialized combination of hardware and software. SPARC
provides Lisp application programs the potent combination
of excellent run-time performance and the ability to detect
the most common errors very quickly.

Finally, since a typical Lisp program consists of a large
number of small functions, Sun Common Lisp takes advan-
tage of the SPARC register windows. The compiler uses reg-
ister windows to achieve very fast function calling and
argument processing. It is particularly effective in cases that
involve a shallow stack of called functions that pass a small
number of arguments and programs for which tail call opti-
mization is effective. The speed of this function-calling
mechanism can have a major impact on application perfor-
mance.

Lisp provides programmers with a number of interesting op-
portunities to trade execution time for ease of debugging. In
general, for every increase in execution-time performance,
there is a decrease in program flexibility and available infor-
mation for error analysis. As an example, consider the fol-
lowing simple function:

(defun adder (first second)

(+ first second))

The programmer has not provided any information as to
the type of arguments to be passed to adder. Because of
this, a test must be done at runtime to identify the kind of
addition to be performed. This test adds a sizeable overhead
to execution of the function.

If the programmer knows that only f ixnum (single-pre-
cision integer) values will be passed to the function and that
the result of the addition will also be a £ixnum, then it is
possible to inform the Lisp compiler of this through type dec-
larations, as shown below:

(defun adder (first second)

(declare (fixnum first second))

(the fixnum (+ first second)))

If the optimization parameters for speed and safety of gen-
erated code are set to maximum and minimum values re-

197

spectively, then the Lisp compiler is free to bypass the type
checking and generate code for f i xnumaddition. However,
if either value passed to this faster version of adder isnota
fixnum, then it produces an erroneous result, rather than
returning a correct (possibly non-f ixnum) value or report-
ing an error. Normally, it is not possible to catch this sort of
error without paying a run-time penalty.

SPARCsystem computers offer an elegant solution to this
speed vs. safety problem with their tagged arithmetic in-
structions. These instructions divide the value to be pro-
cessed into two fields, as shown below:

30-bit signed integer fag
Lt b

198

Special instructions in the SPARC architecture support
addition and subtraction between tagged integers. The tag
fields are checked at the same time the arithmetic is per-
formed. If the tag fields of both arguments are zero, then they
are £ ixnums and the result is returned. If either tag is non-
zero or an arithmetic overflow occurs, then a condition code
is set. Optionally, the instruction can cause a trap to occur on
a nonzero tag or £ ixnum overflow.

In the fully declared adder function above, the tagged
add and trap on overflow instruction permit fast execution
and still provide excellent error detection. If the arguments
and results are as declared, then the generated code wastes
no time in error detection. A non-fixnum result causes a
trap to a routine that allocates and returns an extended-pre-
cision integer (a bignum). An invalid argument causes a
trap to the Lisp debugger.

If declarations are not used, the tagged add instruction
uses a condition code to identify its outcome. If both argu-
ments are f1ixnums, execution time increases over the fully
declared function by one conditional branch instruction (in
production mode of the compiler). If the tagged add fails,
then a generic addition function is invoked that can handle
all types of numeric data.

This means that Sun Common Lisp on SPARCsystems
can be counted on to deal correctly with any error that results
from fixnum addition or subtraction without any sacrifice
in execution speed. While other computer systems require
that programmers risk an incorrect result to get the fastest

Chapter 2. SPARCompiler™ Compilation Technology

Tag Bits for List Processing

possible execution, SPARC’s tagged arithmetic instructions
offer Lisp developers high speed and error detection.

As the name of the language might imply, processing of
linked lists is a common activity in Lisp programs. The car
(find the value of the current list element) and cdr (find the
next list element) operations are executed frequently. (A list
element, in the sense used here, is also known as a cons celll.)
It is not unusual for a malfunctioning program to attempt to
take the car or cdr of something that is not a valid list ele-
ment. This is an error that most Lisp systems detect at higher
compiler safety settings.

On SPARC-based systems, the misuse of car and cdr is
always detected, even with safety set to 0. Lisp takes advan-
tage of the SPARC architecture’s requirement that word-ori-
ented loads and stores require word-aligned addresses, that
is, ones that are divisible by four. Aninvalid address invokes
a trap handler that in turn reports the precise cause of the
error to the Lisp debugger.

As for f ixnums, Sun Common Lisp divides pointers into
data and tag fields. This time, the data field is the address of
the target value without the two low-order bits. In a valid
word pointer, these rightmost bits are always zero. In Sun
Common Lisp, a list element has a tag value of 1. All other
types of Lisp objects have tag values other than 1.

Lisp uses the combined word-address-and-tag value of a
list element as its base address. This address, with its tag
value of 1, actually points to the second byte of the first word
of the list element, as shown:

word offset of start of list element 01
L L] T Y T M O O A
word offset of start of next list element (cadr) tag
T I I A I A l N A I B ‘ I
word offset of start of this list element (car) tag
I T A S I ‘ T I O ‘ R I |

2.5 Sun Commeon Lisp™

1. The object ni1l is also considered a list element for present purposes; the
mechanism described here works correctly for nil.

199

2.6
Sun COBOL™

Sun COBOL
Compiler and
Interpreter

200

The address of the cdr of a list element is this base value
minus 1, and the address of the car is the base value plus 3.
If the target of the operation is a valid list element, then car
or cdr always produces an address on a word boundary.
Taking the car or cdr of any other type of object always
causes a trap, because the calculated address is not divisible
by four. Because invalid address detection is an integral part
of SPARC address processing, no additional time is neces-
sary to detect this type of error.

This is another case where a compiler safety setting of 0 in
Sun Common Lisp offers as high a degree of error detection
as a much higher setting on other Lisp systems, without the
overhead other systems experience.

The Sun COBOL product is based on the MicroFocus™ com-
piler system. The basic MicroFocus product has been en-
hanced by Sun Microsystems to provide superior perfor—
mance on networked file systems. This enhancement was
accomplished by replacing the general C-ISAM file handler
with the Sun Net[SAM™ file handler. The NetISAM file
handler gives better network performance for indexed-se-
quential files across a network. The COBOL section of the
SPARCompiler Benchmark white paper highlights the dra-
matic performance improvements attained through the use
of this optimized file handler.

Sun COBOL programs can call any procedure using the
C parameter-passing mechanism.

The Sun COBOL compiler system was validated in 1990
by the National Institute of Standards and Technology
(NIST) as compliant at the high level with ANSI X3.23-1985
“Programming Language COBOL.” The system also com-
plies with all other relevant standards, including ISO 1989-
1985 and FIPS PUB 21-2, and is XPG3 compliant.

The compiler system has the classic division into front end
and back end components that communicate through an in-
termediate code file. In addition, there is an interpreter/
loader utility, cobrun, that can execute the intermediate
code produced by the front end, and can load the SPARC
code produced by the code generator.

The front end lexically, syntactically and semantically an-
alyzes the source code; the back end is a code generator that
outputs SPARC instructions in a form similar to that used in
.o files, known as “generated code form.” This generated
code file can be loaded and run using the interpreter /loader

Chapter 2. SPARCompiler™ Compilation Technology

utility cobrun. The back end can also use 14 to produce
statically linked executable modules in system-standard
a.out format.

The trade-offs of these different translation alternatives
are examined in the next section.

Choosin I'd Between Each of the three translated forms—interpreted, generated,
Intervreted and compiled—has different attributes. Thus, the compiler

p ’ provides flexibility that allows users to tailor their code de-
Generated, and velopment and execution to suit the needs of each specific

Compiled Code

situation. The code translation alternatives are depicted in
Figure 2.5.

A file that contains interpreted form code can be inter-
preted on any Micro Focus platform, not only SPARC sys-
tems. Interpreted form is particularly convenient for Inde-
pendent Software Vendors (ISVs) who develop portable ap-
plications, or for programmers who want to port an applica-
tion from a Micro Focus system on other hardware to a Sun

workstation.
compiler frontend |———p-(intermediate code compiler back end end
translator debugger
interpreter/loader interpreter /loader o

a.out form

Compile option:

interpreted form

cob -a foo.cbl

generated code form

cob -u foo.cbl

cob -x foo.cbl

Produces files: foo.int, foo.idy foo.gnt foo, foo.o
Attributes: + small file small file large file

+ code is statically linked

+ uses dynamic loading uses dynamic loading uses dynamic loading

+ runs on any MicroFocus platform

+ can user debugger cannot use debugger cannot use debugger

- slow on CPU-bound code fast on CPU-bound code fastest on CPU-bound
code

- needs interpreter/loader needs interpreter/loader self-contained executable
Uses: + debugging small, fast executable huge, fast executable

+ portable applications benchmarking
Figure 2.5. Code translation alternatives.
2.6 Sun COBOL™ 201

Dynamic Loading in
Sun COBOL

Flags, Directives,
and Switches for Sun
COBOL

202

The “dynamic loading” referred to in this document should
be distinguished from the SunOS “dynamic linking” feature.
Dynamic loading is a feature of the MicroFocus implementa-
tion that loads COBOL modules at runtime, rather than
binding them together permanently into an executable at
link time. When a UNIX file that contains COBOL source
code is compiled to intermediate or generated code form, a
.int or .gnt file is created for each COBOL program
within that file. As the programs are called at runtime, the
corresponding . int and . gnt files are dynamically brought
into memory by the Sun COBOL Runtime System (RTS) for
interpretation or execution. However, dynamic loading does
convey an advantage similar to dynamic linking: executables
are much smaller than statically linked a . out programs be-
cause common libraries are accessed at runtime.

There are two recommended uses of dynamic loading of
COBOL modules. First, an ISV can construct an application
so that its major parts are contained in separate . int or . gnt
files. These parts are then invoked by the main program and
dynamically loaded by the RTS as the features they imple-
ment are used. When an application is structured in this
manner, the ISV can issue updates to customers by supplying
only the . int or .gnt files that require replacement. This
structure may significantly reduce maintenance costs of the
application.

The second use of dynamic loading is for debugging large
applications consisting of many modules. If the code is kept
in separate dynamically loadable COBOL modules, individ-
ual ones can be recompiled for debugging by simply recom-
piling those files with the -a option of the cob command.
This procedure debugs only those modules that were recom-
piled with the -a option; this saves significant maintenance
and development costs for that application.

There are three methods to communicate information to the
compiler and run-time system:

1. Through command-line flags

2. Through compiler options (also known as “direc-
tives”)

3. Through run-time switches.

There are approximately thirty command-line flags.
These flags control aspects of the compilation process (such

Chapter 2. SPARCompiler™ Compilation Technology

as the form of compilation, the name of the output file, and
various linking attributes).

There are approximately one hundred compiler options.
These options adjust the semantics of the language that the
compiler accepts. For example, compiler options are avail-
able that recognize COBOL features specific to IBM Micro-
soft COBOL, to flag features outside a specified dialect, and
to change record type defaults to variable length. In addi-
tion, there are an additional dozen compiler directives spe-
cifically for the code generator. System-wide default
compiler directives are set for all programs in the file /usr/
1ib/cobol/cobopt. Directives can also be communicated
via the environment variable COBOPT, on the command line
with the -C flag, or embedded in a source file. Finally, there
are approximately twenty switches that affect the run-time
behavior of programs. These switches are communicated
through the environment variable COBSW.

/home/baz/linden/foo.cbl

$SET ANS85

INDENTIFICATION DIVISION
PROGRAM-ID. FOO

decreasing order of priority

cob -a -v -C NOALTER

foo.cbl

setenv COBOPT “-C list”

y

/usr/1lib/cobol/cobopt

-C nolist -m ixfile=netizfile

Figure 2.6. Differences Between Compiler Flags and Directives.

2.6 Sun COBOL™

203

2.7
References

SPARC Technology

Compiler Technology

2.A

Appendix A—
Optimization
Definitions

204

SPARCompiler Technology
Muchnick, Steven S. Optimizing Compilers for the SPARC
Architecture, in Sun Technology, Vol. 1, No. 3, Summer 1988
Also in:
“The Sun Technology Papers”, M. Hall and J. Barry
(eds), Springer-Verlag, 1990

“Reduced Instruction Set Computers” (Second Ed.),
Stallings (ed.), IEEE Computer Society Press, Los
Alamitos, CA, 1990

Muchnick, Steven S. Optimization in the SPARC Compilers,
in Procedures of the Sun Users Group Conference, Atlanta,
June 1991

Also to appear in:

Procedures of SUN USER ‘91, Birmingham, England,
September 1991

README (SUG publication), next issue

Garner, R. SPARC: Scalable Processor Architecture,in “The Sun
Technology Papers”, M. Hall and]. Barry (eds), Springer-Ver-
lag, 1990

Aho, Alfred V., Sethi, R. and Ullman J.D. Compilers: Principles,
Techniques, and Tools, Addison-Wesley, 1986

As used in compilers, optimization refers to methods that im-
prove the run-time performance of a compiled program, as
compared to one translated by entirely straightforward
methods. Optimization algorithms usually operate either on
an intermediate code form or on object code.

Most optimizations concentrate on reducing execution
time, but a few are specifically directed toward reducing the
space a program occupies. Occasionally these goals conflict,
so that, for example, a transformation that reduces execution
time may increase the size of the object code. This size in-
crease is rarely a problem because it is not usually very sig-
nificant and, in almost all cases, reducing execution time is
much more desirable than reducing the size of an object pro-
gram.

One of the goals of the SPARCompiler product family is
to produce the most highly optimized code possible. This is
balanced by providing command-line switches that engage
different levels of optimization to suit the needs of the phases
of the development cycle. The remainder of this section pro-

Chapter 2. SPARCompiler™ Compilation Technology

vides definitions for the optimizations that are mentioned in
the body of this report:

* Aggregate Breaking—an optimization that allows the in-
dividual components of composite objects to be treated
as if they were scalars by other optimizations. This op-
timization is especially well-suited to work with copy
propagation, register allocation and inlining. By view-
ing some structure components as scalars, the optimizer
can avoid extraneous memory operations and can en-
able other optimizations that cannot be used effectively
on entire structures.

* Algebraic Address Expression Reorganization—systemati-
cally transforms address expressions and collects region
constants! to form simpler expressions from complex
ones. A general-purpose transformation engine itera-
tively applies rules from a transformation grammar un-
til no more simplification can be achieved.

* Automatic Inlining—A process whereby the code of a
procedure body is placed directly into the body of the
caller, in place of the call. This has several benefits:

°Call overhead is eliminated (this is usually a minor ef-
fect)

°Interprocedural optimizations are exposed (for exam-
ple, common subexpression elimination, dead code
elimination, and register allocation).

°In the current Sun implementation, the caller and the
callee must reside in the same text file. A variety of
sophisticated heuristics are employed to reduce the
probability of adverse performance effects due to code
size expansion. Entry points for the inline functions
are preserved, so they can be called from functions re-
siding in other files and from the debugger.

* Common Subexpression Elimination—saves expression
values and reuses them, instead of recomputing them.

» Complex Expression Expansion—complex expression ex-
pansion works by separating complex expressions into
subtrees for the real and imaginary parts of the complex
expression. By splitting complex expressions in this
manner, it is possible to increase the speed of complex
arithmetic because the separate parts of the complex ex-

1. Region constants are expressions that have the same value throughout
execution of some segment of a procedure, such as a loop.

2.A Appendix A—Optimization Definitions 205

206

pressions reside in registers during function calls, in-
stead of in memory.

Constant Folding—constant-valued expressions are eval-
uated by the compiler and the results are inserted into
the generated code.

Constant Propagation—a technique that replaces refer-
ences to variables that are known to contain constant
values with the constants themselves. The primary ben-
efit of this optimization is that other optimizations such
as constant folding and algebraic simplification can re-
place runtime computations with those done at compile
time.

Copy Propagation—copy operations that assign a simple
value to a variable are of interest to copy propagation if,
at runtime, the source of the assignment can be refer-
enced faster than its target. For each such copy, all uses
of the target that can be reached by this copy are re-
placed by the source, if the source is not redefined be-
tween the copy operation and its use.

Cross Jumping—a technique that combines identical
code found both immediately before a branch instruc-
tion and immediately before the branch target. This re-
dundant code can be combined into one sequence.
Dead Code Elimination—information is maintained by
the optimizer to track what code is reachable. An ex-
pression computation is dead if there is no execution
path along which the computation can reach any use of
the value it computes. A variable definition is dead if it
cannot reach any uses.

Detection of Interesting Variables—a strategy to reduce
compilation time by concentrating optimization effort
on the parts of programs that are expected to yield the
largest improvement for the smallest amount of work.
By analyzing the types and patterns of variable referenc-
es, the optimizer determines which variables are more
likely to be candidates for optimization. These “inter-
esting” variables are then targeted for optimization.
Elimination of Redundant Loads/Stores—As an example,
the load is redundant in the following case:

st %fn, [eq]
1d [QQ]/ %fn

Chapter 2. SPARCompiler™ Compilation Technology

* Elimination of Unnecessary Jumps—For example:
jmp a jmp b

becomes
a: jmp b a:jmp b

* Induction-Variable Strength Reduction—replaces slower
operations (for example, multiplications) by faster ones
(for example, additions or shifts).

* Instruction Scheduling—fine-grained execution parallel-
ism allows several instructions to execute simulta-
neously, as long as they use distinct functional units.
Since both SPARCsystems’ Floating Point Units (FPUs)
and the delay slots following branches and loads pro-
vide such parallelism, the postpass optimizers for these
systems rearrange instructions in the generated code to
take advantage of this parallelism.

* Leaf Routine Optimization—leaf routines (routines that
call no others) are comparatively common. If a leaf rou-
tine uses few registers and needs no local stack, it can be
entered and exited with the minimum possible over-
head by omitting the save and restore instructions
and correspondingly adjusting the register numbers
used in it. This saves cycles and also reduces the num-
ber of register windows employed.

* Loop-Invariant Code Motion—finds those computations
within a loop that yield the same results for each itera-
tion of the loop and moves them out of the loop.

* Loop Inversion—used to convert pre-test loops into post-
testloops. This optimization allows loops that have two
branches per iteration to be turned into loops that have
one branch per iteration.

* Loop Unrolling—replaces the body of a loop with several
copies of the body, adjusting the loop control code ac-
cordingly. This optimization reduces the run-time loop-
ing overhead by reducing the number of loop iterations
taken. More importantly, increasing the size of the loop
body also increases the effectiveness of instruction
scheduling.

e Optimized Block Moves—tight inline code is generated
for block moves when it is known that the source and
destination locations do not overlap.

2.A Appendix A—Optimization Definitions 207

208

* Range Propagation for Elimination of Constraint Checking—

once a range check has been performed on an object, the
object is tracked so that redundant range checks are
eliminated. Related checks can also be eliminated, if, for
example, the range of one object is within the range of
another. Some null reference checks for pointer types
are also eliminated by range propagation.

Register Allocation—decides which objects are worth
placing in registers, and which objects can share a reg-
ister with others within a region of code. For each can-
didate, the benefit is determined by the number of
machine cycles saved by allocating it to a register in-
stead of memory.

Register Coalescing—minimizes the number of registers
required to compute a value. Using the fewest registers
for one computation ensures that as many as possible
are available for use in other computations.

Tail Call Optimization—subroutine calls that are per-
formed immediately before the caller returns are called
tail calls. By placing a routine’s restore instruction in
the delay slot of the tail call, the called subroutine uses
the same register window that its caller used.

Tail Recursion Elimination—converts some self-recursive
procedures into iterations. This typically saves register
window overflows (on calls) and underflows (on re-
turns) and it saves stack allocation, manipulation and
deallocation.

Chapter 2. SPARCompiler™ Compilation Technology

CHAPTER

The SPARCworks™
Programming Environment

3.1
Introduction

SPARCworks™ is a set of six programming tools for use with
SPARCompilers. The SPARCworks programming environ-
ment speeds and simplifies the tasks software developers do
most often — edit and merge source code, compile programs,
debug programs, and tune program performance.

SPARCworks tools form part of an overall developm<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>